Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms and optimization of in vivo delivery of lipophilic siRNAs

Abstract

Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipophilic siRNA conjugates have different in vivo activities.
Figure 2: Lipid-conjugated siRNAs (siRNA-apoM) associate with lipoproteins and albumin in blood.
Figure 3: Cholesterol-siRNAs associated with lipoproteins are taken up by the liver more efficiently than in free or albumin-bound cholesterol-siRNAs.
Figure 4: Cholesterol-siRNA is taken up by different tissues depending on its association with specific lipoproteins.
Figure 5: Cholesterol-siRNA associated with lipoproteins is taken up independently of lipoprotein particle endocytosis.
Figure 6: LDL receptor (Ldlr) mediates LDL-associated cholesterol-siRNA delivery in vivo.
Figure 7: Sid1 is required for uptake of lipid-conjugated siRNAs in vitro.

Similar content being viewed by others

References

  1. McManus, M.T. & Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 (2002).

    Article  CAS  Google Scholar 

  2. Li, M. & Rossi, J.J. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells. Methods Mol. Biol. 309, 261–272 (2005).

    CAS  PubMed  Google Scholar 

  3. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

    Article  CAS  Google Scholar 

  4. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  5. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  6. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  Google Scholar 

  7. Brown, M.S. & Goldstein, J.L. The receptor model for transport of cholesterol in plasma. Ann. NY Acad. Sci. 454, 178–182 (1985).

    Article  CAS  Google Scholar 

  8. Assmann, G. & Nofer, J.R. Atheroprotective effects of high-density lipoproteins. Annu. Rev. Med. 54, 321–341 (2003).

    Article  CAS  Google Scholar 

  9. Rigotti, A., Miettinen, H.E. & Krieger, M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr. Rev. 24, 357–387 (2003).

    Article  CAS  Google Scholar 

  10. Stein, O. & Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 144, 285–301 (1999).

    Article  CAS  Google Scholar 

  11. Brown, M.S. & Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).

    Article  CAS  Google Scholar 

  12. Connelly, M.A. & Williams, D.L. Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15, 287–295 (2004).

    Article  CAS  Google Scholar 

  13. Pittman, R.C. et al. A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem. J. 212, 791–800 (1983).

    Article  CAS  Google Scholar 

  14. Duxbury, M.S., Ashley, S.W. & Whang, E.E. RNA interference: a mammalian SID1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem. Biophys. Res. Commun. 331, 459–463 (2005).

    Article  CAS  Google Scholar 

  15. Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID1. Science 295, 2456–2459 (2002).

    Article  CAS  Google Scholar 

  16. Breckenridge, W.C. The catabolism of very low density lipoproteins. Can. J. Biochem. Cell Biol. 63, 890–897 (1985).

    Article  CAS  Google Scholar 

  17. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  Google Scholar 

  18. Landschulz, K.T., Pathak, R.K., Rigotti, A., Krieger, M. & Hobbs, H.H. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J. Clin. Invest. 98, 984–995 (1996).

    Article  CAS  Google Scholar 

  19. Rudling, M.J., Reihner, E., Einarsson, K., Ewerth, S. & Angelin, B. Low density lipoprotein receptor-binding activity in human tissues: quantitative importance of hepatic receptors and evidence for regulation of their expression in vivo. Proc. Natl. Acad. Sci. USA 87, 3469–3473 (1990).

    Article  CAS  Google Scholar 

  20. Brown, M.S., Ho, Y.K. & Goldstein, J.L. The low-density lipoprotein pathway in human fibroblasts: relation between cell surface receptor binding and endocytosis of low-density lipoprotein. Ann. NY Acad. Sci. 275, 244–257 (1976).

    Article  CAS  Google Scholar 

  21. Brown, M.S. & Goldstein, J.L. Receptor-mediated control of cholesterol metabolism. Science 191, 150–154 (1976).

    Article  CAS  Google Scholar 

  22. Feinberg, E.H. & Hunter, C.P. Transport of dsRNA into cells by the transmembrane protein SID1. Science 301, 1545–1547 (2003).

    Article  CAS  Google Scholar 

  23. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  Google Scholar 

  24. Rigotti, A. et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA 94, 12610–12615 (1997).

    Article  CAS  Google Scholar 

  25. Damha, M.J. & Ogilvile, K.K. Oligonucleotide synthesis. The silyl phosphoramidite method. Methods Mol. Biol. 20, 81–114 (1993).

    CAS  PubMed  Google Scholar 

  26. Manoharan, M., Kesavan, V. & Rajeev, K.G. SiRNA's containing ribose substitutes to which lipophilic moieties may be attached. US patent application 2,005,107,325 (2005).

  27. Iyer, R.P., Eagan, W., Regan, J.B. & Beaucage, S.L. 3H–1,2 benzodithiole- 3-one 1,1-dioxide as an improved sulfurizing reagent in the solid-phase synthesis of oligodeoxyribonucleoside phosphorothioates. J. Am. Chem. Soc. 112, 1253–1254 (1990).

    Article  CAS  Google Scholar 

  28. Daugaard, H., Egfjord, M. & Olgaard, K. Isolated perfused rat kidney and liver combined. A new experimental model. Pflugers Arch. 409, 220–222 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Maraganore, H.-P. Vornlocher, M.A. Maier and P. Sharp for helpful discussion and suggestions. These studies were supported by National Institutes of Health grant 1 P01 GM073047-01 (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Stoffel.

Ethics declarations

Competing interests

M.S. is a member of the scientific advisory board of Alnylam Pharmaceuticals, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfrum, C., Shi, S., Jayaprakash, K. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25, 1149–1157 (2007). https://doi.org/10.1038/nbt1339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing