Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Ensemble modeling for analysis of cell signaling dynamics

Abstract

Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S. cerevisiae TOR signal transduction and workflow for its model-based analysis.
Figure 2: Model discrimination and identification of pivotal experiments.
Figure 3: Model-based hypothesis generation and experimental validation.
Figure 4: Logic of TOR signaling.

Similar content being viewed by others

References

  1. Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  2. Butcher, E.C., Berg, E.L. & Kunkel, E.J. Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259 (2004).

    Article  CAS  Google Scholar 

  3. Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. & Hohmann, S. Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23, 975–982 (2005).

    Article  CAS  Google Scholar 

  4. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  Google Scholar 

  5. Brown, K.S. et al. The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys. Biol. 1, 184–195 (2004).

    Article  CAS  Google Scholar 

  6. von Dassow, G., Meir, E., Munro, E.M. & Odell, G.M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).

    Article  CAS  Google Scholar 

  7. Murphy, J.M. et al. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772 (2004).

    Article  CAS  Google Scholar 

  8. Hubner, I.A., Deeds, E.J. & Shakhnovich, E.I. High-resolution protein folding with a transferable potential. Proc. Natl. Acad. Sci. USA 102, 18914–18919 (2005).

    Article  CAS  Google Scholar 

  9. Dietterich, T.G. Ensemble methods in machine learning. Lect. Notes Comput. Sci. 1857, 1–15 (2000).

    Article  Google Scholar 

  10. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  Google Scholar 

  11. Yu, J., Smith, A., Wang, P.P., Hartemink, A.J. & Jarvis, E.D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).

    Article  CAS  Google Scholar 

  12. Turkheimer, F.E., Hinz, R. & Cunningham, V.J. On the undecidability among kinetic models: from model selection to model averaging. J. Cereb. Blood Flow Metab. 23, 490–498 (2003).

    Article  Google Scholar 

  13. Wahl, S.A., Haunschild, M.D., Oldiges, M. & Wiechert, W. Unravelling the regulatory structure of biochemical networks using stimulus response experiments and large-scale model selection. IEE Proc. Syst. Biol. (Stevenage) 153, 275–285 (2006).

    Article  CAS  Google Scholar 

  14. Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  15. Cooper, T.G. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26, 223–238 (2002).

    Article  CAS  Google Scholar 

  16. Inoki, K., Ouyang, H., Li, Y. & Guan, K.L. Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79–100 (2005).

    Article  CAS  Google Scholar 

  17. Magasanik, B. & Kaiser, C.A. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1–18 (2002).

    Article  CAS  Google Scholar 

  18. Zabrocki, P. et al. Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Mol. Microbiol. 43, 835–842 (2002).

    Article  CAS  Google Scholar 

  19. Jiang, Y. & Broach, J.R. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J. 18, 2782–2792 (1999).

    Article  CAS  Google Scholar 

  20. Luke, M.M. et al. The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol. Cell. Biol. 16, 2744–2755 (1996).

    Article  CAS  Google Scholar 

  21. Jacinto, E., Guo, B., Arndt, K.T., Schmelzle, T. & Hall, M.N. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol. Cell 8, 1017–1026 (2001).

    Article  CAS  Google Scholar 

  22. Schwefel, H.P. Evolution and optimum seeking. (Wiley, New York; 1995).

    Google Scholar 

  23. Jaqaman, K. & Danuser, G. Linking data to models: data regression. Nat. Rev. Mol. Cell Biol. 7, 813–819 (2006).

    Article  CAS  Google Scholar 

  24. Molinaro, A.M., Simon, R. & Pfeiffer, R.M. Prediction error estimation: a comparison of resampling methods. Bioinformatics 21, 3301–3307 (2005).

    Article  CAS  Google Scholar 

  25. Beck, T. & Hall, M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689–692 (1999).

    Article  CAS  Google Scholar 

  26. Yan, G., Shen, X. & Jiang, Y. Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J. 25, 3546–3555 (2006).

    Article  CAS  Google Scholar 

  27. Li, H., Tsang, C.K., Watkins, M., Bertram, P.G. & Zheng, X.F. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature (2006).

  28. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  29. Schmidt, A., Beck, T., Koller, A., Kunz, J. & Hall, M.N. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17, 6924–6931 (1998).

    Article  CAS  Google Scholar 

  30. Di Como, C.J. & Arndt, K.T. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10, 1904–1916 (1996).

    Article  CAS  Google Scholar 

  31. Tate, J.J., Rai, R. & Cooper, T.G. Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae. J. Biol. Chem. 280, 27195–27204 (2005).

    Article  CAS  Google Scholar 

  32. Wang, H., Wang, X. & Jiang, Y. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol. Biol. Cell 14, 4342–4351 (2003).

    Article  CAS  Google Scholar 

  33. Santhanam, A., Hartley, A., Duvel, K., Broach, J.R. & Garrett, S. PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot. Cell 3, 1261–1271 (2004).

    Article  CAS  Google Scholar 

  34. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J. III, & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    Article  CAS  Google Scholar 

  35. Ljung, L. & Ljung, E.J. System Identification: Theory for the User. (Prentice Hall PTR, 1999).

    Google Scholar 

  36. Moles, C.G., Mendes, P. & Banga, J.R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003).

    Article  CAS  Google Scholar 

  37. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1988).

    Google Scholar 

  38. Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23, 961–966 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michael N. Hall, Francis J. Doyle III and Joachim Buhmann for critical reading of the manuscript and helpful suggestions as well as the Swiss National Science Foundation and ETH Zurich for financial support to M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stelling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Notes (DOC 1115 kb)

Supplementary Text and Figures

Supplementary Data 1 (ZIP 12 kb)

Supplementary Text and Figures

Supplementary Data 2 (XLS 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuepfer, L., Peter, M., Sauer, U. et al. Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 25, 1001–1006 (2007). https://doi.org/10.1038/nbt1330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing