Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular breeding of polymerases for amplification of ancient DNA

Abstract

In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged1. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding2 of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication3,4 selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000–60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection scheme.
Figure 2: Quadruple-mismatch extension and template slippage.
Figure 3: Damage tolerance and ancient DNA amplification.

Similar content being viewed by others

References

  1. Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    Article  PubMed  Google Scholar 

  2. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ghadessy, F.J., Ong, J.L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA 98, 4552–4557 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghadessy, F.J. et al. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution. Nat. Biotechnol. 22, 755–759 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Leonard, J.A. et al. Ancient DNA evidence for Old World origin of New World dogs. Science 298, 1613–1616 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Jaenicke-Despres, V. et al. Early allelic selection in maize as revealed by ancient DNA. Science 302, 1206–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Anderung, C. et al. Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proc. Natl. Acad. Sci. USA 102, 8431–8435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green, R.E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Geigl, E.M. Inadequate use of molecular hybridization to analyze DNA in Neanderthal fossils. Am. J. Hum. Genet. 68, 287–291 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plosky, B.S. & Woodgate, R. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr. Opin. Genet. Dev. 14, 113–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Poinar, H.N. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394 (2005).

    Article  PubMed  Google Scholar 

  13. Huang, M.-M., Arnheim, N. & Goodman, M.F. Extension of base mispairs by Taq polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 20, 4567–4573 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, H. & Grollman, A.P. Kinetics of DNA polymerase I (Klenow fragment exo-) activity on damaged DNA templates: effect of proximal and distal template damage on DNA synthesis. Biochemistry 36, 15336–15342 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki, M., Baskin, D., Hood, L. & Loeb, L.A. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Proc. Natl. Acad. Sci. USA 93, 9670–9675 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xia, G. et al. Directed evolution of novel polymerase activities: mutation of a DNA polymerase into an efficient RNA polymerase. Proc. Natl. Acad. Sci. USA 99, 6597–6602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong, J.L., Loakes, D., Jaroslawski, S., Too, K. & Holliger, P. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J. Mol. Biol. 361, 537–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda, T. et al. Error rate and specificity of human and murine DNA polymerase eta. J. Mol. Biol. 312, 335–346 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Frank, E.G. et al. Altered nucleotide misinsertion fidelity associated with poliota-dependent replication at the end of a DNA template. EMBO J. 20, 2914–2922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Höss, M., Jaruga, P., Zastawny, T.H., Dizdaroglu, M. & Pääbo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24, 1304–1307 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lindahl, T. & Karlstrom, O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 12, 5151–5154 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).

    Article  CAS  PubMed  Google Scholar 

  23. Hansen, A.J. et al. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173, 1175–1179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bloom, J.D., Labthavikul, S.T., Otey, C.R. & Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998) [see comments].

    Article  CAS  PubMed  Google Scholar 

  26. Ghadessy, F.J. & Holliger, P. Compartmentalized self-replication: a novel method for the directed evolution of polymerases and other enzymes. Methods Mol. Biol. 352, 237–248 (2007).

    CAS  PubMed  Google Scholar 

  27. Debbie, P. et al. Allele identification using immobilized mismatch binding protein: detection and identification of antibiotic resistant bacteria and determination of sheep susceptibility to scrapie. Nucleic Acids Res. 25, 4825–4829 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McDonald, J.P. et al. Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs. Nucleic Acids Res. 34, 1102–1111 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hofreiter, M. et al. Evidence for reproductive isolation between cave bear populations. Curr. Biol. 14, 40–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.d'A. was supported by a Medical Research Council studentship and a Junior Research Fellowship from Trinity College, Cambridge, UK. A.V. and R.W. were supported by funds from the NICHD/NIH Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

M.d'A. contributed to library construction, CSR selection and, together with M.H. and S.P., to ancient DNA amplification. M.d'A., P.H., A.V. and R.W. contributed to polymerase characterization using template lesions synthesized by D.L., D.G. and J.C. P.H. contributed to the planning and design of the project and manuscript writing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5, Supplementary Table 1, Supplementary Methods (PDF 2554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

d'Abbadie, M., Hofreiter, M., Vaisman, A. et al. Molecular breeding of polymerases for amplification of ancient DNA. Nat Biotechnol 25, 939–943 (2007). https://doi.org/10.1038/nbt1321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1321

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing