Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards zoomable multidimensional maps of the cell

Abstract

The detailed structure of molecular networks, including their dependence on conditions and time, are now routinely assayed by various experimental techniques. Visualization is a vital aid in integrating and interpreting such data. We describe emerging approaches for representing and visualizing systems data and for achieving semantic zooming, or changes in information density concordant with scale. A central challenge is to move beyond the display of a static network to visualizations of networks as a function of time, space and cell state, which capture the adaptability of the cell. We consider approaches for representing the role of protein complexes in the cell cycle, displaying modules of metabolism in a hierarchical format, integrating experimental interaction data with structured vocabularies such as Gene Ontology categories and representing conserved interactions among orthologous groups of genes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Comparison of different graphical representations of a portion of the cell cycle's START-related events at G1 phase in Saccharomyces cerevisiae.
Figure 2: A metagraph of the network of protein complexes discovered through tandem affinity mass spectrometry tagging by Gavin et al. and grouped and colored to indicate subsequent functional assignments59.
Figure 3: A network using the same set of complexes as Figure 2, except with edges representing interactions derived by large-scale two-hybrid assays55.
Figure 4: Model representing the same data as Figure 1, represented by a metagraph showing transitions between views.
Figure 5: Using a metagraph to integrate two annotation methods.
Figure 6: A zoomable map of metabolic modules.
Figure 7: Illustration of steps to determine a network in Homo sapiens using the metagraph concept, where each metanode represents a set of orthologous eukaryotic genes from the COG database53.

References

  1. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    CAS  PubMed  Article  Google Scholar 

  2. Lashkari, D.A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 32 (suppl. 2), 526–532 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA 97, 1143–1147 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

    CAS  Article  PubMed  Google Scholar 

  7. Rual, J.F. et al. Toward a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Article  Google Scholar 

  8. Bimbo, A. et al. Systematic deletion analysis of fission yeast protein kinases. Eukaryot. Cell 4, 799–813 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Parks, A.L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

    CAS  PubMed  Article  Google Scholar 

  10. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    CAS  PubMed  Article  Google Scholar 

  11. Gitton, Y. et al. A gene expression map of human chromosome 21 orthologs in the mouse. Nature 420, 586–590 (2002).

    CAS  PubMed  Article  Google Scholar 

  12. Kim, S.K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001).

    CAS  PubMed  Article  Google Scholar 

  13. Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).

    CAS  PubMed  Article  Google Scholar 

  14. Oltvai, Z.N. & Barabasi, A.L. Systems biology. Life's complexity pyramid. Science 298, 763–764 (2002).

    CAS  PubMed  Article  Google Scholar 

  15. Prinz, S. et al. Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res. 14, 380–390 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Spirin, V. & Mirny, L.A. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA 100, 12123–12128 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    CAS  PubMed  Article  Google Scholar 

  18. Rives, A.W. & Galitski, T. Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabasi, A.L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    CAS  PubMed  Article  Google Scholar 

  20. Endy, D. & Brent, R. Modelling cellular behavior. Nature 409, 391–395 (2001).

    CAS  PubMed  Article  Google Scholar 

  21. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Demir, E. et al. An ontology for collaborative construction and analysis of cellular pathways. Bioinformatics 20, 349–356 (2004).

    CAS  PubMed  Article  Google Scholar 

  23. Fukuda, K. & Takagi, T. Knowledge representation of signal transduction pathways. Bioinformatics 17, 829–837 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. Breitkreutz, B.J., Stark, C. & Tyers, M. Osprey: a network visualization system. Genome Biol. 4, R22 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  25. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Kohn, K.W. & Aladjem, M.I. Circuit diagrams for biological networks. Mol. Syst. Biol. [online] 2, 2006.0002 (2006).

  27. Kitano, H., Funahashi, A., Matsuoka, Y. & Oda, K. Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23, 961–966 (2005).

    CAS  PubMed  Article  Google Scholar 

  28. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    CAS  PubMed  Article  Google Scholar 

  29. Sugiyama, K. & Misue, K. Visualization of structure information: automatic drawing of compound digraphs. IEEE Trans. Syst. Man Cybern. 21, 876–892 (1991).

    Article  Google Scholar 

  30. Berge, C. Graphs and hypergraphs 2nd rev. edn. (Elsevier North-Holland, New York, 1976).

    Google Scholar 

  31. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    CAS  Article  PubMed  Google Scholar 

  32. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Article  Google Scholar 

  33. Herman, I., Melanç on, G. & Marshall, S.M. Graph visualization and navigation in information visualization: a survey. IEEE Trans. on Visualization and Computer Graphics 6, 24–43 (2000).

    Article  Google Scholar 

  34. Stamm, S. Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum. Mol. Genet. 11, 2409–2416 (2002).

    CAS  PubMed  Article  Google Scholar 

  35. Boulos, M.N. The use of interactive graphical maps for browsing medical/health Internet information resources. Int. J. Health Geogr. [online] 2, 1 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  36. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Fraser, A.G. & Marcotte, E.M. A probabilistic view of gene function. Nat. Genet. 36, 559–564 (2004).

    CAS  PubMed  Article  Google Scholar 

  39. Guimera, R. & Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    CAS  PubMed  Article  Google Scholar 

  41. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003).

    CAS  PubMed  Article  Google Scholar 

  42. Wu, J., Hu, Z. & DeLisi, C. Gene annotation and network inference by phylogenetic profiling. BMC Bioinformatics [online] 7, 80 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. D'Amours, D. & Jackson, S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signaling. Nat. Rev. Mol. Cell Biol. 3, 317–327 (2002).

    CAS  PubMed  Article  Google Scholar 

  44. Kohn, K.W. Molecular interaction maps as information organizers and simulation guides. Chaos 11, 84–97 (2001).

    CAS  PubMed  Article  Google Scholar 

  45. Kohn, K.W., Aladjem, M.I., Weinstein, J.N. & Pommier, Y. Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell 17, 1–13 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Kohn, K.W., Aladjem, M.I., Kim, S., Weinstein, J.N. & Pommier, Y. Depicting combinatorial complexity with the molecular interaction map notation. Mol. Syst. Biol. [online] 2, 51 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Blinov, M.L., Faeder, J.R., Goldstein, B. & Hlavacek, W.S. A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems 83, 136–151 (2006).

    CAS  PubMed  Article  Google Scholar 

  48. Zanzoni, A. et al. MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140 (2002).

    CAS  PubMed  Article  Google Scholar 

  49. Noy, N.F. et al. Protege-2000: an open-source ontology-development and knowledge-acquisition environment. AMIA Annu. Symp. Proc. 953 (2003).

  50. Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. [online] 33, D428–D432 (2005).

    CAS  PubMed  Article  Google Scholar 

  51. Yu, H. et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14, 1107–1118 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Kelley, B.P. et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. [online] 32, W83–W88 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Tatusov, R.L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics [online] 4, 41 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  54. Saraiya, P., North, C. & Duca, K. Visualizing biological pathways: requirements analysis, systems evaluation and research agenda. Information Visualization 1, 15 (2005).

    Google Scholar 

  55. Hu, Z. et al. VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res. [online] 33, W352–W357 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Demir, E. et al. PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18, 996–1003 (2002).

    CAS  PubMed  Article  Google Scholar 

  57. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Andrews, B. & Measday, V. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14, 66–72 (1998).

    CAS  PubMed  Article  Google Scholar 

  59. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  Article  PubMed  Google Scholar 

  60. Hu, Z., Mellor, J., Wu, J. & DeLisi, C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics [online] 5, 17 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  61. Cherry, J.M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Mellor, J.C., Yanai, I., Clodfelter, K.H., Mintseris, J. & DeLisi, C. Predictome: a database of putative functional links between proteins. Nucleic Acids Res. 30, 306–309 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles DeLisi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, Z., Mellor, J., Wu, J. et al. Towards zoomable multidimensional maps of the cell. Nat Biotechnol 25, 547–554 (2007). https://doi.org/10.1038/nbt1304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1304

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing