Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A nonisotopic estrogen receptor–based assay to detect estrogenic compounds


We have used the ligand binding domain of the recombinant human estrogen receptor (hER) to develop a nonisotopic assay for detection of estrogenic compounds. The assay is based on competition of the estrogenic ligand with 17β-estradiol for binding to the receptor, which leaves 17β-estradiol free to bind to an anti–17β-estradiol antibody. Unbound anti–17β-estradiol antibody then binds to immobilized 17β-estradiol–protein conjugate (to which hER is unable to bind for steric reasons), and is detected by an enzyme-labeled anti-rabbit IgG antibody. We used the assay to detect estrogenic compounds (mainly members of the flavonoid group of plant polyphenols) in a variety of commonly consumed plant foods.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competition of various estrogenic compounds with [3H]–17β–estradiol for the hER–LBD.
Figure 2
Figure 3: Diagrammatic representation of the receptor–based microtitration plate assay.
Figure 4: Competitive binding curves of various estrogenic compounds in the nonisotopic receptor–based assay.


  1. Wiese, T.E. & Kelce, W.R. An introduction to environmental oestrogens. Chemistry and Industry 24,648 –653 (1997).

    Google Scholar 

  2. Adlercreutz, H. Phytoestrogens: epidemiology and a possible role in cancer protection. Environ. Health Perspect. 103, 103– 112 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anthony, M.S. et al. Soybean isoflavones improve cardiovascular risk factors without effecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126, 43–50 ( 1996).

    Article  CAS  Google Scholar 

  4. Evans, R.M. The steroid and thyroid receptor superfamily. Science 230, 889–895 (1988).

    Article  Google Scholar 

  5. Obourn, J.D., Koszewski, N.J. & Angelo, C.N. Hormone and DNA binding mechanisms of the recombinant human estrogen receptor. Biochemistry 32, 6229–6236 (1993).

    Article  CAS  Google Scholar 

  6. Seielstad, D.A., Carlson, K.E., Katzenellenbogen, J.A., Kushner, P.J. & Greene, G.L. Molecular characterisation by mass spectrometry of the human estrogen receptor ligand binding domain expressed in Escherichia coli. Mol. Endocrinol. 9, 647–658 (1995).

    CAS  PubMed  Google Scholar 

  7. Miksicek, R.J. Interaction of naturally occurring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J. Steroid Biochem. Mol. Biol. 49, 153–160 (1994).

    Article  CAS  Google Scholar 

  8. Häggblad, J., Carlsson, B., Kivelä, P. & Siitari, H. Scintillating microtitration plates as platform for determination of [3H]-estradiol binding constants for hER-HBD. BioTechniques 18, 146–151 ( 1995).

    PubMed  Google Scholar 

  9. Redeuilh, G., Secco, C. & Baulieu, E.E. The use of biotinyl estradiol-avidin system for the purification of nontransformed estrogen receptor by biohormonal affinity chromatography. J. Biol. Chem. 260, 3996– 4002 (1985).

    CAS  PubMed  Google Scholar 

  10. Lewis, D.F.V., Parker, M.G. & King, R.J.B. Molecular modelling of the human estrogen receptor and ligand interactions based on site-directed mutagenesis and amino acid sequence homology. J Steroid Biochem. Mol. Biol. 52 , 55–65 (1995).

    Article  CAS  Google Scholar 

  11. Liggins, J., Blurk, L.J.C., Coward, W.A. & Bingham, S.A. Extraction and quantification of daizein and geinstein in food. Anal. Biochem. 264, 1–7 (1998).

    Article  CAS  Google Scholar 

  12. Seifert, M., Haindl, S. & Hock, B. Development of an enzyme linked receptor assay (ELRA) for estrogens and xenoestrogens. Anal. Chim. Acta 386 , 191–199 (1999).

    Article  CAS  Google Scholar 

  13. Bolger, R., Wiese, T.E., Ervin, K., Nestich, S. & Checovich, W. Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ. Health Perspect. 106, 551–557 (1998).

    Article  CAS  Google Scholar 

  14. Mosselman, S., Polman, J. & Dijkema, R. ERβ: identification and characterisation of a novel human estrogen receptor. FEBS Lett. 392, 49–53 (1996).

    Article  CAS  Google Scholar 

  15. Kuiper, G.G.J.M. et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138, 863–870 ( 1997).

    Article  CAS  Google Scholar 

  16. Clarkson, T.B., Anthony, M.S., Williams, J.K., Honoré, E.K. & Cline, J.M. The potential of soybean phytoestrogens for postmenopausal hormone replacement therapy. PSEBM 217, 365–368 (1998).

    CAS  Google Scholar 

  17. Jones, L.A. & Hajek, R.A. Effects of estrogenic chemicals on development. Environ. Health Persepect. 103, 63–67 (1995).

    Google Scholar 

  18. Miksicek, R.J. Estrogenic flavonoids: structural requirements for biological activity. Proc. Soc. Exp. Biol. Med. 208, 44– 50 (1995).

    Article  CAS  Google Scholar 

  19. Coward, L., Barnes, N.C., Stechell, K.P.R. & Barnes, S. Genistein and daidzein and their β-glycoside conjugates: anti-tumour isoflavones in soybean foods of the American and Asian diets. J. Agric. Food Chem. 41, 1961–1967 (1993).

    Article  CAS  Google Scholar 

  20. Wang, H-J. & Murphy, P.A. Isoflavone content in commercial soybean foods. J. Agric. Food Chem., 42, 1666–1673 (1994).

    Article  CAS  Google Scholar 

  21. Soto, A.M. et al. The E-screen assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ. Health Perspect. 103, 113–122 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Creeke, P.I. et al. Development of enzyme-linked immunosorbent assays (ELISAs) for the measurement of the dietary phytoestrogens daidzein and equol in human plasma. Food Agric. Immunol. 10, 325– 337 (1998).

    Article  CAS  Google Scholar 

  23. Lapcik, O. et al. Radioimmunoassay of free genistein in human serum. J. Steroid Biochem. Mol. Biol. 64, 261–268 ( 1998).

    Article  CAS  Google Scholar 

  24. Murphy, P.A., Song, T., Buseman, G. & Barua, K. Isoflavones in soy-based infant formulas. J. Agric. Food Chem. 45, 4635– 4638 (1997).

    Article  CAS  Google Scholar 

  25. Erlanger, B.F., Borek, F., Beisner, S.H. & Libermans, S. Steroid–protein conjugates -1. Preparation and characterisation of conjugates of bovine serum albumin with testosterone and cortisone. J. Biol. Chem. 228, 713–727 (1958).

    Google Scholar 

Download references


The financial support of the Ministry of Agriculture, Fisheries, and Food is gratefully acknowledged. We thank Elif Buyukpamukcu for making the 17β–estradiol–BTG conjugate; Geoffrey Greene of the Ben May Institute, University of Chicago for providing the GST–LBD plasmid; Jason Liggins of the Dunn Nutrition Centre, University of Cambridge, UK, for helpful discussions and isoflavone measurements of some foods; Keith Price of the Institute of Food Research (Norwich, UK) for valuable discussions on flavonoids in foods; and Hugh Makin of Queen Mary & Westfield College, University of London, London, UK, for helpful discussions and his support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Heather A. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garrett, S., Lee, H. & Morgan, M. A nonisotopic estrogen receptor–based assay to detect estrogenic compounds. Nat Biotechnol 17, 1219–1222 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing