Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Semirational design of a potent, artificial agonist of fibroblast growth factor receptors

Abstract

Fibroblast growth factors (FGFs) are being investigated in human clinical trials as treatments for angina, claudication, and stroke. We designed a molecule structurally unrelated to all FGFs, which potently mimicked basic FGF activity, by combining domains that (1) bind FGF receptors (2) bind heparin, and (3) mediate dimerization. A 26-residue peptide identified by phage display specifically bound FGF receptor (FGFR) 1c extracellular domain but had no homology with FGFs. When fused with the c-jun leucine zipper domain, which binds heparin and forms homodimers, the polypeptide specifically reproduced the mitogenic and morphogenic activities of basic FGF with similar potency (EC50 = 240 pM). The polypeptide required interaction with heparin for activity, demonstrating the importance of heparin for FGFR activation even with designed ligands structurally unrelated to FGF. Our results demonstrate the feasibility of engineering potent artificial agonists for the receptor tyrosine kinases, and have important implications for the design of nonpeptidic ligands for FGF receptors. Furthermore, artificial FGFR agonists may be useful alternatives to FGF in the treatment of ischemic vascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of C19jun.
Figure 2: C19jun is a potent FGFR agonist.
Figure 3: Specificity of C19jun for FGFR.
Figure 4: Competition of C19jun and bFGF for 125I-bFGF binding to FGFR1.
Figure 5: Activities of C19jun variants.

Similar content being viewed by others

References

  1. Mason, I.J. The ins and outs of fibroblast growth factors. Cell 78, 547–552 (1994).

    Article  CAS  Google Scholar 

  2. Wilkie, A.O., Morriss-Kay, G.M., Jones, E.Y. & Heath, J.K. Functions of fibroblast growth factors and their receptors. Curr. Biol. 5, 500–507 ( 1995).

    Article  CAS  Google Scholar 

  3. Asahara, T. et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1,II365–II371 (1995).

    Article  Google Scholar 

  4. Baffour, R. et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J. Vasc. Surg. 16, 181–191 (1992).

    Article  CAS  Google Scholar 

  5. Harada, K. et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest. 94, 623–630 (1994).

    Article  CAS  Google Scholar 

  6. Landau, C., Jacobs, A.K. & Haudenschild, C.C. Intrapericardial basic fibroblast growth factor induces myocardial angiogenesis in a rabbit model of chronic ischemia. Am. Heart J. 129, 924–931 (1995).

    Article  CAS  Google Scholar 

  7. Lazarous, D.F. et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91, 145–153 ( 1995).

    Article  CAS  Google Scholar 

  8. Yanagisawa-Miwa, A. et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401 –1403 (1992).

    Article  CAS  Google Scholar 

  9. Koketsu, N. et al. Pretreatment with intraventricular basic fibroblast growth factor decreases infarct size following focal cerebral ischemia in rats. Ann. Neurol. 35, 451–457 ( 1994).

    Article  CAS  Google Scholar 

  10. Tian, S.S. et al. A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor. Science 281, 257–259 ( 1998).

    Article  CAS  Google Scholar 

  11. Cwirla, S.E. et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276, 1696– 1699 (1997).

    Article  CAS  Google Scholar 

  12. Wrighton, N.C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–464 (1996).

    Article  CAS  Google Scholar 

  13. Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974– 977 (1999).

    Article  CAS  Google Scholar 

  14. Waksman, G. & Herr, A.B. New insights into heparin-induced FGF oligomerization. Nat. Struct. Biol. 5, 527–530 (1998).

    Article  CAS  Google Scholar 

  15. Bellot, F. et al. Ligand-induced transphosphorylation between different FGF receptors. EMBO J. 10, 2849–2854 ( 1991).

    Article  CAS  Google Scholar 

  16. Baird, A., Schubert, D., Ling, N. & Guillemin, R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 85, 2324–2328 (1988).

    Article  CAS  Google Scholar 

  17. Gallagher, J.T. & Turnbull, J.E. Heparan sulphate in the binding and activation of basic fibroblast growth factor. Glycobiology 2, 523–528 (1992).

    Article  CAS  Google Scholar 

  18. Moy, F.J. et al. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry 36, 4782–4791 (1997).

    Article  CAS  Google Scholar 

  19. DiGabriele, A.D. et al. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393, 812– 817 (1998).

    Article  CAS  Google Scholar 

  20. Spivak-Kroizman, T. et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–1024 ( 1994).

    Article  CAS  Google Scholar 

  21. Riley, L.G. et al. Cloning, expression, and spectroscopic studies of the Jun leucine zipper domain. Eur. J. Biochem. 219, 877 –886 (1994).

    Article  CAS  Google Scholar 

  22. Patel, L.R., Curran, T. & Kerppola, T.K. Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proc. Natl. Acad. Sci. USA 91, 7360–7364 (1994).

    Article  CAS  Google Scholar 

  23. Crameri, R. & Suter, M. Display of biologically active proteins on the surface of filamentous phages: a cDNA cloning system for the selection of functional gene products linked to the genetic information responsible for their production. Gene 160, 139 (1995).

    Article  CAS  Google Scholar 

  24. de Kruif, J. & Logtenberg, T. Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630 –7634 (1996).

    Article  CAS  Google Scholar 

  25. Claude, P., Parada, I.M., Gordon, K.A., D'Amore, P.A. & Wagner, J.A. Acidic fibroblast growth factor stimulates adrenal chromaffin cells to proliferate and to extend neurites, but is not a long-term survival factor. Neuron 1, 783–790 (1988).

    Article  CAS  Google Scholar 

  26. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  27. Werner, S. et al. Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand- binding specificities. Mol. Cell. Biol. 12, 82– 88 (1992).

    Article  CAS  Google Scholar 

  28. Wang, F., Kan, M., Xu, J., Yan, G. & McKeehan, W.L. Ligand-specific structural domains in the fibroblast growth factor receptor. J. Biol. Chem. 270, 10222 –10230 (1995).

    Article  CAS  Google Scholar 

  29. Hulme, E.C. & Birdsall, N.J.M. in Receptor-ligand interactions: a practical approach (ed. Hulme, E.C.) 101–104 (Oxford University Press, New York; 1993).

    Google Scholar 

  30. Ray, J., Baird, A. & Gage, F.H. A 10-amino acid sequence of fibroblast growth factor 2 is sufficient for its mitogenic activity on neural progenitor cells. Proc. Natl. Acad. Sci. USA 94, 7047– 7052 (1997).

    Article  CAS  Google Scholar 

  31. Yayon, A. et al. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc. Natl. Acad. Sci. USA 90, 10643–10647 (1993).

    Article  CAS  Google Scholar 

  32. Pantoliano, M.W. et al. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33, 10229–10248 (1994).

    Article  CAS  Google Scholar 

  33. Plotnikov, A.N., Schlessinger, J., Hubbard, S.R. & Mohammadi, M. Structural basis for FGF receptor dimerization and activation. Cell 98, 641–650 ( 1999).

    Article  CAS  Google Scholar 

  34. Doyle, M.V. et al. in Combinatorial libraries: synthesis, screening and application potential (ed. Cortese, R.) 171 (Walter de Gruyter, New York; 1996).

    Google Scholar 

  35. Kiefer, M.C. et al. Molecular cloning of a human basic fibroblast growth factor receptor cDNA and expression of a biologically active extracellular domain in a baculovirus system. Growth Factors 5, 115– 127 (1991).

    Article  CAS  Google Scholar 

  36. Grussenmeyer, T., Scheidtmann, K.H., Hutchinson, M.A., Eckhart, W. & Walter, G. Complexes of polyoma virus medium T antigen and cellular proteins. Proc. Natl. Acad. Sci. USA 82, 7952–7954 (1985).

    Article  CAS  Google Scholar 

  37. Laminet, A.A., Apell, G., Conroy, L. & Kavanaugh, W.M. Affinity, specificity, and kinetics of the interaction of the SHC phosphotyrosine binding domain with asparagine-X-X-phosphotyrosine motifs of growth factor receptors. J. Biol. Chem. 271, 264– 269 (1996).

    Article  CAS  Google Scholar 

  38. Shyamala, V. et al. High-throughput screening for ligand-induced c-fos mRNA expression by branched DNA assay in Chinese hamster ovary cells. Anal. Biochem. 266, 140–147 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jaime Escobedo, Anke Klippel, and Lewis T. Williams for helpful discussions and provision of reagents; Hermel Manalo and Hamid Khoja for expert technical assistance; and Leah Conroy, Gwynn Pardee, and Stephania Widger for baculovirus-expressed proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Michael Kavanaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballinger, M., Shyamala, V., Forrest, L. et al. Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotechnol 17, 1199–1204 (1999). https://doi.org/10.1038/70746

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing