Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

cobA, a red fluorescent transcriptional reporter for Escherichia coli, yeast, and mammalian cells

Abstract

We demonstrate the use of Propionibacterium freudenreichii uroporphyrinogen III methyltransferase (cobA) as a reporter of gene expression in Escherichia coli, fission yeast, and mammalian cells. Overexpression of cobA in cells resulted in bright red fluorescence that was visualized with standard fluorescence microscopy and fluorescence-activated cell sorting analysis at the single-cell level. As with green fluorescent protein (GFP), no addition of exogenous substrate was required. When expressed in Chinese hamster ovary cells from a bicistronic transcript, cobA and GFP gave rise to fluorescence signals of similar intensity. The bright red fluorescence generated by the cobA reporter promises a better signal-to-noise ratio than blue and green fluorescent reporter systems, as autofluorescence and light scattering of cells, media, and materials are reduced in the red wavelengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible IPTG CobA expression in E. coli.
Figure 2: Thiamine-controlled CobA expression in fission yeast.
Figure 3: CobA expression in CHO-K1 cells transiently transfected with pVgRxR and pcDNA3, pcDNA3–cobA, or pIND–cobA.
Figure 4: Coexpression of CobA and GFP2 from a bicistronic mRNA.
Figure 5: FACScan of CobA- and EGFP-expressing CHO cells.

Similar content being viewed by others

References

  1. An, G., Hidaka, K. & Siminovitch, L. Expression of bacterial beta-galactosidase in animal cells. Mol. Cell. Biol. 2, 1628– 1632 (1982).

    Article  CAS  Google Scholar 

  2. Gorman, C.M., Moffat, L.F. & Howard, B.H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  3. Gould, S.J. & Subramani, S. Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175, 5–13 (1988).

    Article  CAS  Google Scholar 

  4. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 ( 1988).

    Article  CAS  Google Scholar 

  5. Yoon, K., Thiede, M.A. & Rodan, G.A. Alkaline phosphatase as a reporter enzyme. Gene 66, 11–17 ( 1988).

    Article  CAS  Google Scholar 

  6. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  7. Millar, A.J., Carre, I.A., Strayer, C.A., Chua, N.-H. & Kay, S.A. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163 (1995).

    Article  CAS  Google Scholar 

  8. Millar, A.J., Straume, M., Chory, J., Chua, N.-H. & Kay, S.A. The regulation of phototransduction pathways in Arabidopsis . Science 267, 1163– 1166 (1995).

    Article  CAS  Google Scholar 

  9. Plautz, J.D. et al. Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene 173, 83–87 (1996).

    Article  CAS  Google Scholar 

  10. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–88 (1998).

    Article  CAS  Google Scholar 

  11. Warren, M.J., Roessner, C.A., Santander, P.J. & Scott, A.I. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem. J. 265, 725–729 (1990).

    Article  CAS  Google Scholar 

  12. Sattler, I. et al. Cloning, sequencing, and expression of the uroporphyrinogen III methyltransferase cobA gene of Propionibacterium freudenreichii (shermanii). J. Bacteriol. 177, 1564–1569 (1995).

    Article  CAS  Google Scholar 

  13. Roessner, C.A. & Scott, A.I. Fluorescence-based method for selection of recombinant plasmids. Biotechniques 19, 760–764 (1995).

    CAS  PubMed  Google Scholar 

  14. Scott, A.I. Recent studies of enzymically controlled steps in B12 biosynthesis. Ciba Found Symp. 180, 285–303 (1994).

  15. Stüber, D., Matile, H. & Garotta, G. in Immunological methods Vol. IV I. Leftovits & B. Pernis, Eds. Pe121–152 (Academic Press, Orlando 1990).

    Book  Google Scholar 

  16. Maundrell, K. nmt1 of fission yeast. J. Biol. Chem. 265, 10857–10864 (1990).

    CAS  PubMed  Google Scholar 

  17. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  18. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  Google Scholar 

  19. Dirks, W., Wirth, H. & Hauser, H. Dicistronic transcription units for gene expression in mammalian cells. Gene 128, 247– 249 (1993).

    Article  CAS  Google Scholar 

  20. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  21. Leustek, T. et al. Siroheme biosynthesis in higher plants. Analysis of an S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana. J. Biol. Chem. 272, 2744–2752 (1997).

    Article  CAS  Google Scholar 

  22. Sakakibara, H., Takei, K. & Sugijama, T. Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. Plant J. 10, 883–892 ( 1996).

    Article  CAS  Google Scholar 

  23. Raux, E., McVeigh, T., Peters, S.E., Leustek, T. & Warren, M. The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem.J. 338, 701–708 ( 1999).

    Article  CAS  Google Scholar 

  24. Chou, P.L. et al. Reddish Escherichia coli cells caused by overproduction of Bacillus stearothermophilus uroporphyrinogen III methylase: cloning, sequencing, and expression of the gene. Biosci. Biotechnol. Biochem. 59, 1817–1824 (1995).

    Article  CAS  Google Scholar 

  25. Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  26. Tsien, R.Y. Rosy dawn for fluorescent proteins. Nat. Biotechnol. 17, 956–957 (1999).

    Article  CAS  Google Scholar 

  27. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795– 823 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Charles A. Roessner for the gift of pISA417; Adriana Missano, Nicole Holzwarth, Nina Barth, and Ashley Hayes for technical assistance; and Dr. Francis Mueller and E. Kunitz for help using the spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Deuschle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildt, S., Deuschle, U. cobA, a red fluorescent transcriptional reporter for Escherichia coli, yeast, and mammalian cells. Nat Biotechnol 17, 1175–1178 (1999). https://doi.org/10.1038/70713

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing