Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide expression monitoring in Saccharomyces cerevisiae


The genomic sequence of the budding yeast Saccharomyces cerevisiae has been used to design and synthesize high-density oligonucleotide arrays for monitoring the expression levels of nearly all yeast genes. This direct and highly parallel approach involves the hybridization of total mRNA populations to a set of four arrays that contain a total of more than 260,000 specifically chosen oligonucleotides synthesized in situ using light-directed combinatorial chemistry. The measurements are quantitative, sensitive, specific, and reproducible. Expression levels ranging from less than 0.1 copies to several hundred copies per cell have been measured for cells grown in rich and minimal media. Nearly 90% of all yeast mRNAs are observed to be present under both conditions, with approximately 50% present at levels between 0.1 and 1 copy per cell. Many of the genes observed to be differentially expressed under these conditions are expected, but large differences are also observed for many previously uncharacterized genes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., et al. 1996. Life with 6000 genes. Science 274: 546–567.

    CAS  Article  Google Scholar 

  2. 2

    Goffeau, A., et al. 1997. The yeast genome directory. Nature 387(suppl 1): 1–105.

    Google Scholar 

  3. 3

    Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., et al. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.

    CAS  Article  Google Scholar 

  4. 4

    Lennon, G.G., and Lehrach, H. 1991. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7: 314–317.

    CAS  Article  Google Scholar 

  5. 5

    Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    CAS  Article  Google Scholar 

  6. 6

    Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima, Y., Matsubara, K. 1992. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genet. 2: 173–179.

    CAS  Article  Google Scholar 

  7. 7

    Meier-Ewert, S., Maier, E., Ahmadi, A., Curtis, J., and Lehrach, H. 1993. An automated approach to generating expressed sequence catalogues. Nature 361: 375–376.

    CAS  Article  Google Scholar 

  8. 8

    Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. 1995. Serial analysis of gene expression. Science 270: 484–487.

    CAS  Article  Google Scholar 

  9. 9

    Zhao, N., Hashida, H., Takahashi, N., Misumi, Y., and Sakaki, Y. 1995. High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression. Gene 156: 207–213.

    CAS  Article  Google Scholar 

  10. 10

    Nguyen, C., Rocha, D., Granjeaud, S., Baldit, M., Bernard, K., Naquet, P., and Jordan, B.R. 1995. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29: 207–216.

    CAS  Article  Google Scholar 

  11. 11

    Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    CAS  Article  Google Scholar 

  12. 12

    Ivanova, N.B. and Belyavsky, A.V. 1995. Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting. Nucl. Acids Res. 23: 2954–2958.

    CAS  Article  Google Scholar 

  13. 13

    Shalon, D., Smith, S.J., and Brown, P.O. 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Res. 6: 639–645.

    CAS  Article  Google Scholar 

  14. 14

    Prashar, Y. and Weissman, S.M. 1996. Analysis of differential gene expression by display of 3′ end restriction fragments of cDNAs. Proc. Natl. Acad Sci. USA 93: 659–663.

    CAS  Article  Google Scholar 

  15. 15

    Pietu, G., Alibert, O., Guichard, V., Lamy, B., Bois, F., Leroy, E., et al. 1996. Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Research 6: 492–503.

    CAS  Article  Google Scholar 

  16. 16

    Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology 14: 1675–1680.

    CAS  Article  Google Scholar 

  17. 17

    Burns, N., Grimwade, B., Ross-Macdonald, P.B., Choi, E.Y., Finberg, K., Roeder, G.S., and Snyder, M. 1994. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8: 1087–1105.

    CAS  Article  Google Scholar 

  18. 18

    Niedenthal, R.K., Riles, L., Johnston, M., and Hegemann, J.H., 1996. Fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12: 773–786.

    CAS  Article  Google Scholar 

  19. 19

    Shevchenko, A., Jensen, O.N., Podtelejnikov, A.V., Sagliocco, F., Wilm, M., Vorm, O., et al. 1996. Linking genome and pnoteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA 93: 14440–14445.

    CAS  Article  Google Scholar 

  20. 20

    Velculescu, V.E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M.A., Bassett, D.E. Jr., et al. 1997. Characterization of the yeast transcriptome. Cell 88: 243–251.

    CAS  Article  Google Scholar 

  21. 21

    Richard, G.F., Fairhead, C., and Dujon, B. 1997. Complete transcriptional map of yeast chromosome XI in different life conditions. J. Mol. Biol. 268: 303–321.

    CAS  Article  Google Scholar 

  22. 22

    Lashkari, D., DeRisi, J., McCusker, J., Namath, A., Gentile, C., Hwang, S., et al. 1997. Yeast genome microarrays for parallel genetic and gene expression analysis of the yeast genome. Proc. Natl. Acad. Sci. USA. In press.

  23. 23

    Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., and Solas, D . 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773.

    CAS  Article  Google Scholar 

  24. 24

    Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P.A. 1994. Light-directed oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91: 5022–5026.

    CAS  Article  Google Scholar 

  25. 25

    Chee, M.S., Huang, X., Yang, R., Hubbell, E., Berno, A., Stern, D., et al. 1996. Accessing genetic information with high-density DNA arrays. Science 274: 610–614.

    CAS  Article  Google Scholar 

  26. 26

    Iyer, V. and Struhl, K. 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 5208–5212.

    CAS  Article  Google Scholar 

  27. 27

    Hereford, L.M. and Rosbash, M. 1977. Number and distribution of polyadenylat-ed RNA sequences in yeast. Cell 10: 453–462.

    CAS  Article  Google Scholar 

  28. 28

    Lewin, B. 1980. Gene expression, Vol. 2. Wiley-lnterscience, New York.

    Google Scholar 

  29. 29

    Michaelis, S. and Herskowitz, I. 1988. The a-factor pheromone of Saccharomyces cerevisiae is essential for mating. Mol. Cell Biol. 8: 1309–1318.

    CAS  Article  Google Scholar 

  30. 30

    Burkholder, A.C. and Hartwell, L.H. 1985. The yeast alpha-factor receptor structural properties deduced from the sequence of the STE2 gene. Nucl. Acids Res. 13: 8463–8475.

    CAS  Article  Google Scholar 

  31. 31

    Kurjan, J. and Herskowitz, I. 1982. Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell 30: 933–943.

    CAS  Article  Google Scholar 

  32. 32

    Singh, A., Chen, E.Y., Lugovoy, J.M., Chang, C.N., Hitzeman, R.A., and Seeburg, P.H. 1983. Saccharomyces cerevisiae contains two discrete genes coding for the alpha-factor pheromone. Nucl. Acids Res. 11: 4049–4063.

    CAS  Article  Google Scholar 

  33. 33

    Hagen, D.C., McCaffrey, G., and Sprague, G.F. Jr. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. USA 83: 1418–1422.

    CAS  Article  Google Scholar 

  34. 34

    Garrels, J.I., Futcher, B., Kobayashi, R., Latter, G.I., Schwender, B., Volpe, T., et al. 1994. Protein identifications for a Saccharomyces cerevisiae protein database. Electrophoresis 15: 1466–1486.

    CAS  Article  Google Scholar 

  35. 35

    Boucherie, H., Dujardin, G., Kermorgant, M., Monribot, C., Slonimski, P., and Perrot, M. 1995. Two-dimensional protein map of Saccharomyces cerevisiae: construction of a gene-protein index. Yeast 11: 601–603.

    CAS  Article  Google Scholar 

  36. 36

    Maillet, I., Lagniel, G., Perrot, M., Boucherie, H., and Labarre, J. 1996. Rapid identification of yeast proteins in two-dimenstional gels. J. Biol. Chem. 271: 10263–10270.

    CAS  Article  Google Scholar 

  37. 37

    Sagliocco, F., Guillemot, J.-C., Monribot, C., Capdevielle, J., Perrot, M., Ferran, E., Ferrara, P., and Boucherie, H. 1996. Identification of proteins of the yeast protein map using genetically manipulated strains and peptide mass fingerprinting. Yeast 12: 1519–1533.

    CAS  Article  Google Scholar 

  38. 38

    Boucherie, H., Sagliocco, F., Joubert, R., Maillet, I., Labarre, J., and Perrot, M. 1996. Two-dimensional gel protein database of Saccharomyces cerevisiae. Electrophoresis 17: 1683–1699.

    CAS  Article  Google Scholar 

  39. 39

    Smith, V., Botstein, D., and Brown, P.O. 1995. Genetic footprinting: a genomic strategy for determining a gene's function given it's sequence. Proc. Natl. Acad. Sci. USA 92: 6479–6483.

    CAS  Article  Google Scholar 

  40. 40

    Smith, V., Chou, K.N., Lashkari, D., Botstein, D., and Brown, P.O. 1996. Functional analysis of the genes of yeast of yeast chromosome V by genetic foot-printing. Science 274: 2069–2074.

    CAS  Article  Google Scholar 

  41. 41

    Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M., and Davis, R.W. 1996. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet. 14: 450–456.

    CAS  Article  Google Scholar 

  42. 42

    Ross-Macdonald, P., Sheehan, A., Roeder, G.S., and Snyder, M. 1997. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae.Proc. Natl. Acad. Sci. USA 94: 190–195

    CAS  Article  Google Scholar 

  43. 43

    Schmitt, M.E., Brown, T.A., and Trumpower, B.L. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae.Nucl. Acids Res. 18: 3091–3092.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wodicka, L., Dong, H., Mittmann, M. et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15, 1359–1367 (1997).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing