Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Open sandwich ELISA: A novel immunoassay based on the interchain interaction of antibody variable region

Abstract

We describe an immunoassay that is based on the interchain interaction of separated VL and VH chains from a single chain antibody variable region. In the presence of antigen, the chains reassociate. VL fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 were immobilized on microtiter plates. Samples were coincubated with an M13-displayed VH chain, and assayed with peroxidase-labeled anti-M13 antibody. Signal was detected in direct proportion to the amount of HEL in the sample. Wide dynamic range with <15 ng/ml sensitivity was attained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holliger, P. and Winter, G. 1993. Engineering bispecific antibodies. Curr. Opin. Biotech. 4: 446–449.

    Article  CAS  PubMed  Google Scholar 

  2. Winter, G. and Milstein, C. 1991. Man-made antibodies. Nature 349: 293–299.

    Article  CAS  PubMed  Google Scholar 

  3. Sedlacek, H.H. et al. 1988. Monoclonal antibodies in tumor therapy, contributions to oncology 32. Karger-Verlag, Basel, Switzerland.

    Google Scholar 

  4. Ward, E.S. 1992. Expression and purification of antibody fragments using Escherichia coli as a host, pp. 121–138 in Antibody engineering: a practical guide. Borrebaeck, C.A.K. (ed.). W. H. Freeman & Co., New York.

    Google Scholar 

  5. Glockshuber, R., Malia, M., Pfitzinger, I., and Plückthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  6. Huston, J.S. et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli . Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bird, R.E. et al. 1988. Single-chain antigen binding proteins. Science 242: 423–426.

    Article  CAS  PubMed  Google Scholar 

  8. Better, M., Chang, C.P., Robinson, R.R., and Horwitz, A.H. 1988. Escherichia coli secretion of an active chimeric antibody fragment. Science 240: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  9. Ueda, Y., Tsumoto, K., Watanabe, K., and Kumagai, I. 1993. Synthesis and expression of a DNA encoding the Fv domain of an anti-lysozyme monoclonal antibody, HyHEL10, in Streptomyces lividans . Gene 29: 129–134.

    Google Scholar 

  10. Tsumoto, K. et al. 1994. Effect of the order of antibody variable regions on the expression of the single-chain HyHEL 10 Fv fragment in E. coli and the thermodynamic analysis of its antigen-binding properties. Biochem. Biophys. Res. Comm. 201: 546–551.

    Article  CAS  PubMed  Google Scholar 

  11. Tsumoto, K. et al. 1995. Role of Tyr residues in the contact region of anti-lysozyme monoclonal antibody HyHEL-10 for antigen binding. J. Blol. Chem. 270: 18551–18557.

    Article  CAS  Google Scholar 

  12. Tsumoto, K. et al. 1994. Contribution to antibody-antigen interaction of structurally perturbed antigenic residues upon antibody binding. J. Biol. Chem. 269: 28777–28782.

    CAS  PubMed  Google Scholar 

  13. Pharmacia Biosensor AB. 1994. BIAtechnology handbook. Merk AB, Uppsala, Sweden.

  14. Padlan, E.A. et al. 1989. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86: 5938–5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lavoie, T.B., Drohan, W.N., and Smith-Gill, S.J. 1992. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J. Immunol. 148: 503–513.

    CAS  PubMed  Google Scholar 

  16. Maenaka, K. et al. 1996. A stable phage-display system using a phagemid vector: phage display of hen egg-white lysozyme (HEL), Escherichia coli alkaline phosphatase, and anti-HEL monoclonal antibody, HyHEL-10. Biochem. Biophys. Res. Comm. 218: 682–687.

    Article  CAS  PubMed  Google Scholar 

  17. Muyldermans, S., Atarhouch, T., Saldanha, J., Barbosa, J.A.R.G., and Hamers, R. 1994. Sequence and structure of VH domain from naturally occuring camel heavy chain immunoglobulins lacking light chains. Protein Engineering 7: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  18. Davies, J. and Riechmann, L. 1994. ‘Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Letters 339: 285–290.

    Article  CAS  PubMed  Google Scholar 

  19. Davies, J. and Riechmann, L. 1995. Antibody VH domains as small recognition units. Bio/Technology 13: 475–479.

    Article  CAS  Google Scholar 

  20. Klein, M., Kortan, C., Kells, D.I., and Dorrington, K.J. 1979. Equilibrium and kinetic aspects of the interaction of isolated variable and constant domains of light chain with the Fd′ fragment of immunoglobulin G. Biochemistry 18: 1473–1481.

    Article  CAS  PubMed  Google Scholar 

  21. Polymenis, M. and Stollar, B.D. 1995. Domain interactions and antigen binding of recombinant anti-Z-DNA antibody variable domains. The role of heavy and light chains measured by surface plasmon resonance. J. Immunol. 154: 2198–2208.

    CAS  PubMed  Google Scholar 

  22. Anthony, J. et al. 1992. Production of stable anti-digoxin Fv in Escherichia coli . Mol. Immunol. 29: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  23. Horne, C., Klein, M., Polidoulis, I., and Dorrington, K.J. 1982. Noncovalent association of heavy and light chains of human immunoglobulins. III. Specific interactions between VH and VL. J. Immunol. 129: 660–664.

    CAS  PubMed  Google Scholar 

  24. Hochman, J., Gavish, M., Inbar, D., and Givol, D. 1976. Folding and interaction of subunits at the antibody combining site. Biochemistry 15: 2706–2710.

    Article  CAS  PubMed  Google Scholar 

  25. Hamel, P.A., Klein, M.H., Smith-Gill, S.J., and Dorrington, K.J. 1987. Relative noncovalent association constant between immunoglobulin H and L chains is unrelated to their expression or antigen-binding activity. J. Immunol. 139: 3012–3020.

    CAS  PubMed  Google Scholar 

  26. Hamel, P.A., Klein, M.H., and Dorrington, K.J. 1986. The role of the VL-and VH-segments in the preferential reassociation of immunoglobulin subunits. Mol. Immunol. 23: 503–510.

    Article  CAS  PubMed  Google Scholar 

  27. Hamel, P.A., Isenman, D.E., Klein, M.H., Luedtke, R., and Dorrington, K.J. 1984. Structural basis for the preferential association of autologous immunoglobulin subunits: role of the J region of the light chain. Mol. Immunol. 21: 277–283.

    Article  CAS  PubMed  Google Scholar 

  28. Smith-Gill, S.J., Hamel, P.A., Lovoie, T.B., and Dorrington, K.J. 1987. Contributions of immunoglobulin heavy and light chains to antibody specificity for lysozyme and two haptens. J. Immunol. 139: 4135–4144.

    CAS  PubMed  Google Scholar 

  29. Ward, E.S., Güssow, D., Griffiths, A.D., Jones, P.T., and Winter, G. 1989. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli . Nature 341: 544–546.

    Article  CAS  PubMed  Google Scholar 

  30. Sun, M., Li, L., Gao, Q.S., and Paul, S. 1994. Antigen recognition by an antibody light chain. J. Biol. Chem. 269: 734–738.

    CAS  PubMed  Google Scholar 

  31. Tyutyulkova, S. and Paul, S. 1994. Selection of functional human immunoglobulin light chains from a phage-display library. Appl. Biochem. Biotechnol. 47: 191–198.

    Article  CAS  PubMed  Google Scholar 

  32. Mei, S., Mody, B., Eklund, S.H., and Paul, S. 1991. Vasoactive intestinal pep-tide hydrolysis by antibody light chains. J. Biol. Chem. 266: 15571–15574.

    CAS  PubMed  Google Scholar 

  33. Satow, Y., Cohen, G.H., Padlan, E.A., and Davies, D.R. 1986. Phosphocholine binding immunoglobulin Fab McPC603; an X-ray diffraction study at 2.7Å. J. Mol. Biol. 190: 593–604.

    Article  CAS  PubMed  Google Scholar 

  34. Figini, M., Marks, J.D., Winter, G., and Griffiths, A.D. 1994. In vitro assembly of repertoires of antibody chains on the surface of phage by renaturation. J. Mol. Biol. 239: 68–78.

    Article  CAS  PubMed  Google Scholar 

  35. Riechmann, L., Foote, J., and Winter, G. 1988. Expression of an antibody Fv fragment in myeloma cells. J. Mol. Biol. 203: 825–828.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, H., Tsumoto, K., Kubota, K. et al. Open sandwich ELISA: A novel immunoassay based on the interchain interaction of antibody variable region. Nat Biotechnol 14, 1714–1718 (1996). https://doi.org/10.1038/nbt1296-1714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1296-1714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing