Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transgenic Corn Plants Expressing MDMV Strain B Coat Protein are Resistant to Mixed Infections of Maize Dwarf Mosaic Virus and Maize Chlorotic Mottle Virus

Abstract

The maize dwarf mosaic virus strain B (MDMV-B) coat protein (cp) gene was cloned into a monocot expression cassette and introduced into sweet corn cell suspension cultures via particle bombardment or electroporation. Transformed cells were selected on culture media containing 300 mg/l kanamycin, and plants were regenerated. Cells from all transformed lines expressed the cp gene; and one transgenic line synthesized approximately 100–200 μg MDMV-cp per gram fresh weight. Plants regenerated from this line were challenged with a virus inoculum concentration adjusted to produce symptoms in nontransgenic controls at six days post inoculation. In growth chamber studies, the presence of the MDMV-cp provided resistance to inoculations with MDMV-A or MDMV-B and to mixed inoculations of MDMV and maize chlorotic mottle virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, L.E. and Alexander, L.J. 1965. Maize dwarf mosaic, a new corn disease. Phytopathology 55: 802–804.

    Google Scholar 

  2. Knoke, J.K., Gingery, R.E. and Louie, R. 1992. Maize dwarf mosaic, maize chlorotic dwarf, and maize streak, p. 235–281. In: Plant Diseases of International Importance: Diseases of Cereals and Pulses. Singh, U.S., Mukhopadhyay, A.N., Kumar, J. and Chaube, H.S. (Eds.). Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  3. Riechmann, J.L., Lain, S. and Garcia, J.A. 1992. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73: 1–16.

    Article  CAS  Google Scholar 

  4. Shaw, J.G. 1985. Early events in plant virus infections, p. 1–21. In: Molecular Plant Virology, Vol 2, Davies, J. W. (Ed.). CRC Press, Boca Raton, FL.

    Google Scholar 

  5. Osbourn, J.K., Sarkar, S. and Wilson, T.M.A. 1990. Complementation of coat protein defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179: 921–925.

    Article  CAS  Google Scholar 

  6. McKern, N.M., Whittaker, L.A., Strike, P.M., Ford, R.E., Jensen, S.G. and Shukla, D.D. 1990. Coat protein properties indicate that maize dwarf mosaic virus-KS1 is a strain of johnsongrass mosaic virus. Phytopathology 80: 907–912.

    Article  CAS  Google Scholar 

  7. Shukla, D.D., Tosic, M., Jilka, J., Ford, R.E., Toler, R.W. and Langham, M.A.C. 1989. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus specific N-termini of coat proteins. Phytopathology 79: 223–229.

    Article  CAS  Google Scholar 

  8. Wilson, T.M.A. 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90: 3134–3141.

    Article  CAS  Google Scholar 

  9. Clark, J.M., Jilka, J.M., Murry, L.M. and Scarafia, L. 1993. Virus Resistant Corn Plants. 1993. Eur. Pat. Appl. EP ♯WO 93/14210.

  10. Murray, E.E., Lotzer, J. and Eberle, M. 1989. Codon usage in plant genes. Nucl. Acids Res. 17: 477–498.

    Article  CAS  Google Scholar 

  11. Rodriguez-Cerezo, E., Klein, P.G. and Shaw, J.G. 1991. A determinant of disease symptom severity is located in the 3′-terminal noncoding region of the RNA of a plant virus. Proc. Natl. Acad. Sci. USA 88: 9863–9867.

    Article  CAS  Google Scholar 

  12. Powell, P.A., Sanders, P.R., Tumer, N., Fraley, R.T. and Beachy, R.N. 1990. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175: 124–130.

    Article  CAS  Google Scholar 

  13. Klein, T.M., Fromm, M., Weissinger, A., Tomes, D., Schaaf, S., Sleten, M. and Sanford, J.C. 1988. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA 85: 4305–4309.

    Article  CAS  Google Scholar 

  14. Fromm, M.E., Taylor, L.P. and Walbot, V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  CAS  Google Scholar 

  15. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  16. Jensen, S.G., Palomar, M.K., Ball, E.M. and Samson, R. 1985. Factors influencing virus titer in maize dwarf mosaic virus-infected sorghum. Phytopathology 75: 1132–1136.

    Article  Google Scholar 

  17. Splittstoesser, W.E., Rest, E.B. and D'Arcy, C.J. 1990. Rapid spread of maize dwarf mosaic. Hort. Science 25: 360.

    Google Scholar 

  18. Olson, A.J., Pataky, J.K., D'Arcy, C.J. and Ford, R.E. 1990. Effects of drought stress and infection by maize dwarf mosaic virus on sweet corn. Plant Dis. 74: 147–151.

    Article  Google Scholar 

  19. Niblett, C.L. and Claflin, L.E. 1978. Corn lethal necrosis—a new virus disease of corn in Kansas. Plant Dis. Rep. 62: 15–19.

    Google Scholar 

  20. Uyemoto, J.K. 1983. Biology and control of maize chlorotic mottle virus. Plant Dis. 67: 7–10.

    Article  Google Scholar 

  21. Hooker, A.L. 1978. Genetics of disease resistance in maize, p. 319–322. In: Maize Breeding and Genetics, Walden, D. B. (Ed.). John Wiley & Sons, New York.

    Google Scholar 

  22. McMullen, M.D. and Louie, R. 1989. The linkage of molecular markers to a gene controlling the symptom response in maize to maize dwarf mosaic virus. Mol. Plant-Microbe Interact. 2: 309–314.

    Article  Google Scholar 

  23. McKinney, H.H. 1929. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 39: 557–578.

    Google Scholar 

  24. Powell-Abel, P., Nelson, R.S., De, B., Hoffman, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Article  Google Scholar 

  25. Gonsalves, D., Chee, P., Provvidenti, R., Seem, R. and Slightom, J.L. 1992. Comparison of coat protein-mediated and genetically derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Bio/Technology 10: 1562–1570.

    CAS  Google Scholar 

  26. Beachy, R.N., Loesch-Fries, S. and Tumer, N. 1990. Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28: 451–471.

    Article  CAS  Google Scholar 

  27. Stark, D.M. and Beachy, R.N. 1989. Protection against potyvirus infection in transgenic plants: Evidence for a broad host spectrum resistance. Bio/Technology 7: 1257–1264.

    Google Scholar 

  28. Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y., Izawa, T., Shimamoto, K. and Toriyama, S. 1993. Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc. Natl. Acad. Sci. USA 89: 9865–9869.

    Article  Google Scholar 

  29. Namba, S., Ling, K., Gonsalves, C., Slightom, J.L. and Gonsalves, D. 1992. Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus II or zucchini yellow mosaic virus against six potyviruses. Phytopathology 82: 940–946.

    Article  CAS  Google Scholar 

  30. Anderson, E.J., Stark, D.M., Nelson, R.M., Powell, P., Tumer, N. and Beachy, R.N. 1989. Transgenic plants that express the coat protein gene of TMV or AIMV interfere with disease development of some nonrelated viruses. Phytopathology 12: 1284–1290.

    Article  Google Scholar 

  31. Sanders, P.R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., LaVallee, B.J., Delannay, X. and Tumer, N.E. 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat proteins. Phytopathology 82: 683–690.

    Article  CAS  Google Scholar 

  32. Lindbo, J.A. and Dougherty, W.G. 1992a. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733.

    Article  CAS  Google Scholar 

  33. Lindbo, J.A. and Dougherty, W.G. 1992b. Pathogen-derived resistance to a potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein sequence. Mol. Plant-Microbe Interact. 5: 144–153.

    Article  CAS  Google Scholar 

  34. Van der Vlugt, R.A.A., Ruiter, R.K. and Goldbach, R. 1992. Evidence for sense RNA-mediated protection to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biol. 20: 631–639.

    Article  CAS  Google Scholar 

  35. Wisniewski, L.A., Powell, P.A., Nelson, R.S. and Beachy, R.N. 1990. Local and systemic spread of tobacco mosaic virus (TMV) in transgenic tobacco. Plant Cell 2: 559–567.

    Article  CAS  Google Scholar 

  36. Hilf, M.E. and Dawson, W.O. 1993. The tobamovirus capsid protein functions as a host specific determinant of long-distance movement. Virology 193: 106–114.

    Article  CAS  Google Scholar 

  37. Register, J.C. and Beachy, R.N. 1988. Resistance to TMV in transgenic plants results from interference with an early event in the infection process. Virology 166: 524–532.

    Article  CAS  Google Scholar 

  38. Mundry, K.W., Watkins, P.A.C., Ashfield, T., Plaskitt, K.A., Eisele-Walter, S. and Wilson, T.M.A. 1991. Complete uncoating of the 5′ leader sequence of tobacco mosaic virus RNA occurs rapidly and is required to initiate cotranslational virus disassembly in vitro. J. Gen. Virol. 72: 769–777.

    Article  CAS  Google Scholar 

  39. Register, J.C. and Beachy, R.N. 1989. Effect of protein aggregation state on coat protein-mediated protection against tobacco mosaic virus using a transient protoplast assay system. Virology 173: 656–663.

    Article  CAS  Google Scholar 

  40. Beachy, R.N. 1993. Virus resistance through expression of coat protein genes, p. 89–104. In: Chet, I. (Ed.). Biotechnology in Plant Disease Control. Wiley-Liss, Inc. New York.

    Google Scholar 

  41. Wilson, T.M.A. 1985. Nucleocapsid disassembly and early gene expression by positive strand RNA viruses. J. Gen. Virol. 66: 1201–1207.

    Article  CAS  Google Scholar 

  42. Domier, L.L., Shaw, J.G. and Rhoads, R.E. 1987. Potyviral proteins share amino acid sequence homology with picorna-, como-, and caulimoviral proteins. Virology 158: 20–27.

    Article  CAS  Google Scholar 

  43. Citovsky, V., Knorr, D., Schuster, G. and Zambryski, P. 1990. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60: 637–647.

    Article  CAS  Google Scholar 

  44. Oard, J.H., Paige, D. and Dvorak, J. 1989. Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep. 8: 156–160.

    Article  CAS  Google Scholar 

  45. Mascarenhas, D., Mettler, I.J., Pierce, D.A. and Lowe, H.W. 1990. Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 15: 913–920.

    Article  CAS  Google Scholar 

  46. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. 1988. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  CAS  Google Scholar 

  47. Alfinito, S.C.H., Dietrich, P.S., Murry, L.E. and Sinibaldi, R.M. 1987. A transient expression system for the assessment of plant promotors. J. Cell Biochem. 11B: 46.

    Google Scholar 

  48. Rhodes, C.A., Lowe, K.S. and Ruby, K.L. 1988. Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technology 6: 56–60.

    Google Scholar 

  49. Murashige, T. and Skoog, F. 1963. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479.

    Article  Google Scholar 

  50. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. CSH Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  51. Sachs, M., Freeling, M. and Okimoto, R. 1980. Anaerobic proteins of maize. Cell 20: 761–767.

    Article  CAS  Google Scholar 

  52. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  53. McDonnell, R.E., Clark, R.D., Smith, W.A. and Hinchee, M.A. 1987. A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissue. Plant Mol. Biol. Rep. 5: 380–386.

    Article  CAS  Google Scholar 

  54. Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354.

    Article  CAS  Google Scholar 

  55. Blake, M.S., Johnston, K.H., Russell-Jones, G.J. and Gotschlich, E.C. 1984. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on western blots. Anal. Biochem. 136: 175–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murry, L., Elliott, L., Capitant, S. et al. Transgenic Corn Plants Expressing MDMV Strain B Coat Protein are Resistant to Mixed Infections of Maize Dwarf Mosaic Virus and Maize Chlorotic Mottle Virus. Nat Biotechnol 11, 1559–1564 (1993). https://doi.org/10.1038/nbt1293-1559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1293-1559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing