Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Searching Sequence Space to Engineer Proteins: Exponential Ensemble Mutagenesis

Abstract

We describe an efficient method for generating combinatorial libraries with a high percentage of unique and functional mutants. Combinatorial libraries have been successfully used in the past to express ensembles of mutant proteins in which all possible amino acids are encoded at a few positions in the sequence. However, as more positions are mutagenized the proportion of functional mutants is expected to decrease exponentially. Small groups of residues were randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. By using optimized nucleotide mixtures deduced from the sequences selected from the random libraries, we have simultaneously altered 16 sites in a model pigment binding protein: approximately one percent of the observed mutants were functional. Mathematical formalization and extrapolation of our experimental data suggests that a 107-fold increase in the throughput of functional mutants has been obtained relative to the expected frequency from a random combinatorial library. Exponential ensemble mutagenesis should be advantageous in cases where many residues must be changed simultaneously to achieve a specific engineering goal, as in the combinatorial mutagenesis of phage displayed antibodies. With the enhanced functional mutant frequencies obtained by this method, entire proteins could be mutagenized combinatorially.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oliphant, A.R., Nussbaum, A.L. and Struhl, K. 1986. Cloning of random sequence Oligonucleotides. Gene 44: 177–183.

    Article  CAS  PubMed  Google Scholar 

  2. Reidhaar-Olson, J.F., Bowie, J.U., Breyer, R.M., Hu, J.C., Knight, K.L., Lim, W.A., Mossing, M.C., Parsell, D.A., Shoemaker, K.R. and Sauer, R.T. 1991. Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods in Enzymol. 208: 564–587.

    Article  CAS  Google Scholar 

  3. Gram, H., Marconi, L.-A., Barbas, C.F., Collet, T.A., Lerner, R.A. and Kang, A.S. 1992. In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc. Natl. Acad. Sci. USA 89: 3576–3580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barbas, C.F., Bain, J.D., Hoekstra, D.M. and Lerner, R.A. 1992. Scmisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89: 4457–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lam, K.S., Salmon, S.E., Hersh, E.M., Hruby, V.J., Kazmiersky, W.M. and Knapp, R.J. 1991. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354: 82–84.

    Article  CAS  PubMed  Google Scholar 

  6. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T. and Cuervo, J.H. 1991. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354: 84–86.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, B.L., Markland, W., Ley, A.C., Kent, R.B., White, D.W., Guterman, S.K. and Ladner, R.C. 1992. Directed evolution of a protein: Selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc. Natl. Acad. Sci. USA 89: 2429–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A. 1991. Selecting high-affinity binding proteins by monovalcnt phage display. Biochemistry 30: 10832–10838.

    Article  CAS  PubMed  Google Scholar 

  9. Smith, G.P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315–1317.

    Article  CAS  PubMed  Google Scholar 

  10. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P. and Winter, G. 1991. Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19: 4133–4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang, A.S., Barbas, C.F., Janda, K.D., Benkovic, S.J. and Lerner, R.A. 1991. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries on phage surfaces. Proc. Natl. Acad. Sci. USA 88: 4363–4366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Youvan, D.C. and Ismail, S. 1985. Light-harvesting II B800–B850 complex structural genes from Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 82: 63–67.

    Article  Google Scholar 

  13. Zuber, H. 1990. Consideration on the structural principles of the antenna complexes of phototrophic bacteria, p. 161–180. In: Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. G. Drews and E. A. Dawes (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  14. Arkin, A.P., Goldman, E.R., Robles, S.J., Coleman, W., Goddard, C.A., Yang, M.M. and Youvan, D.C. 1990. Applications of imaging spectroscopy in molecular biology: Colony screening based on absorption spectra. Bio/Technology 8: 746–749.

    CAS  Google Scholar 

  15. Yang, M.M. and Youvan, D.C. 1988. Applications of imaging spectroscopy in molecular biology. I. Screening photosynthetic bacteria. Bio/Technology 6: 939–942.

    CAS  Google Scholar 

  16. Youvan, D.C., Goldman, E.R., Delagrave, S. and Yang, M.M. 1993. Digital imaging spectroscopy for massively parallel screening of mutants. Methods in Enzymol. In press.

  17. Goldman, E.R. and Youvan, D.C. An algorithmically optimized combinatorial library screened by digital imaging spectroscopy. Bio/Technology 10: 1557–1561.

    Article  CAS  Google Scholar 

  18. Delagrave, S., Goldman, E.R. and Youvan, D.C. 1993 Recursive ensemble mutagenesis. Prot. Engng. 6: 327–331.

    Article  CAS  Google Scholar 

  19. Arkin, A.P. and Youvan, D.C. 1992. A combinatorial optimization procedure for protein engineering: Simulation of recursive ensemble mutagenesis. Proc. Natl. Acad. Sci. USA 89: 7811–7815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arkin, A.P. and Youvan, D.C. 1992. Optimizing nucleotide mixtures to encode specific subsets of amino acids for semi-random mutagenesis. Bio/Technology 10: 297–300.

    CAS  Google Scholar 

  21. Youvan, D.C., Arkin, A.P. and Yang, M.M. 1992. Recursive ensemble mutagenesis: A combinatorial optimization technique for protein engineering, p. 401–410. In: Parallel Problem Solving from Nature, 2. R. Maenner and B. Manderick (Eds.). Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  22. Lim, W.A. and Sauer, R.T. 1991. The role of internal packing interactions in determining the structure and stability of a protein. J. Mol. Biol. 219: 359–376.

    Article  CAS  PubMed  Google Scholar 

  23. Robles, S.J., Ranck, T. and Youvan, D.C. 1992. Symmetrical intragenic suppressors of the bacterial reaction center cd-helix exchange mutants, p. 21–23. In: Structure of the Bacterial Photosynthetic Reaction Center (II). J. Breton and A. Vermeglio (Eds.). Plenum, New York.

    Chapter  Google Scholar 

  24. Wells, J.A. 1990. Additivity of mutational effects in proteins. Biochemistry 29: 8509–8516.

    Article  CAS  PubMed  Google Scholar 

  25. Robles, S.J. and Youvan, D.C. 1993. Hydropathy and molar volume constraints on combinatorial mutants of the photosynthetic reaction center. J. Mol. Biol. 232: 242–252.

    Article  CAS  PubMed  Google Scholar 

  26. Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. and Winter, G. 1992. Structural repertoire of the human Vh segments. J. Mol. Biol. 227: 799–817.

    Article  CAS  PubMed  Google Scholar 

  27. Burton, D.R., Barbas, C.F, Persson, M.A.A., Koenig, S., Chanock, R.M. and Lerner, R.A. 1992. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88: 10134–10137.

    Article  Google Scholar 

  28. Sambrook, J., Pritsch, E.F. and Maniatis, T. 1990. Cloning: A Laboratory Manual, 2nd Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delagrave, S., Youvan, D. Searching Sequence Space to Engineer Proteins: Exponential Ensemble Mutagenesis. Nat Biotechnol 11, 1548–1552 (1993). https://doi.org/10.1038/nbt1293-1548

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1293-1548

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing