Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Enhanced Secretion of Human Nerve Growth Factor from Saccharomyces cerevisiae using an Advanced δ–Integration System

Abstract

We have designed an advanced δ–integration system (integration of genes into the δ–sequence of yeast retrotransposon Ty) and used it for secretion of human nerve growth factor (hNGF) from Saccharomyces cerevisiae. The expression and secretion of hNGF was directed by the PGK promoter and MFα1 prepro–signal. Using two selectable markers (URA3 and leu2–d), haploid yeast strains were constructed with approximately 20 copies of a δ–integrated hNGF expression cassette on four chromosomes. The strain secreted hNGF at levels 3–4 fold higher than a 2μm–based plasmid. Northern and Western analyses revealed that the oversecretion was caused by an increased amount of mRNA. We also detected an unusual processing of the MFα1 prepro–hNGF fusion protein that required the pep4 mutation. Application of this system for industrial purposes is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, R.A., Duncan, M.J. and Moir, D.J. 1985. Heterologous protein secretion from yeast. Science 229: 1219–1224.

    Article  CAS  Google Scholar 

  2. Sakai, A., Shimizu, Y. and Hishinuma, F. 1988. Isolation and characterization of mutants which show an oversecretion phenotype in Saccharomyces cerevisiae. Genetics 119: 499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Suzuki, K., Ichikawa, K. and Jigami, Y. 1989. Yeast mutants with enhanced ability to secrete human lysozyme: isolation and identification of a protease-deficient mutant. Mol. Gen. Genet. 219: 58–64.

    Article  CAS  Google Scholar 

  4. Bitter, G.A., Egan, K.M., Koski, E.R., Jones, M.D., Elliott, S.G. and Giffin, J.C. 1987. Expression and secretion vectors for yeast. Methods Enzymol. 153: 516–544.

    Article  CAS  Google Scholar 

  5. Sakai, A., Shimizu, Y. and Hishinuma, F. 1990. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl. Microbiol. Biotechnol. 33: 302–306.

    Article  CAS  Google Scholar 

  6. Kanaya, E., Higashizaki, T., Ozawa, F., Hirai, K., Nishizawa, M., Tokunaga, M., Tsukui, H., Hatanaka, H. and Hishinuma, F. 1989. Synthesis and secretion of human nerve growth factor by Saccharomyces cerevisiae. Gene 83: 65–74.

    Article  CAS  Google Scholar 

  7. Julius, D., Brake, A., Blair, L., Kunisawa, R. and Thorner, J. 1984. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell 37: 1075–1089.

    Article  CAS  Google Scholar 

  8. Julius, D., Schekman, R. and Thorner, J. 1984. Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell 36: 309–318.

    Article  CAS  Google Scholar 

  9. Lehle, L., Cohen, R.E. and Ballou, C.E. 1979. Carbohydrate structure of yeast invertase: demonstration of a form with only core oligosaccharides and a form with completed polysaccharide chains. J. Biol. Chem. 254: 12209–12218.

    CAS  PubMed  Google Scholar 

  10. Errede, B., Company, M. and Hutchinson, III. 1987. Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol. Cell Biol. 7: 258–265.

    Article  CAS  Google Scholar 

  11. Company, M. and Errede, B. 1987. Cell-type-dependent gene activation by yeast transposon Ty1 involves multiple regulatory determinants. Mol. Cell Biol. 7: 3205–3211.

    Article  CAS  Google Scholar 

  12. Strathern, J.N., Newlon, C.S., Herskowitz, I. and Hicks, J.B. 1979. Isolation of a circular derivative of yeast chromosome III: implication for the mechanism of mating type interconversion. Cell 18: 309–319.

    Article  CAS  Google Scholar 

  13. Schekman, R. and Novick, P. 1982. The secretory process and yeast cell-surface assembly, p. 361–393. In: The Molecular Biology of The Yeast Saccharomyces. Metabolism And Gene Expression. Strathern, J. N., Jones, E. W. and Broach, J. R. (Eds). Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  14. Sherman, F., Fink, G.R. and Hicks, J.B. 1986. Laboratory Manual for Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  15. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  16. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.

    Article  CAS  Google Scholar 

  17. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tokunaga, M., Wada, N. and Hishinuma, F. 1987. A novel yeast secretion vector utilizing secretion signal of killer toxin encoded on the yeast linear DNA plasmid pGKL1. Biochem. Biophys. Res. Com. 144: 613–619.

    Article  CAS  Google Scholar 

  19. Eckerskorn, C., Mewes, W., Goretzki, H. and Lottspeich 1988. A new siliconized-glass fiber as support for protein-chemical analysis of electroblotted proteins. Eur. J. Biochem. 176: 509–519.

    Article  CAS  Google Scholar 

  20. Carle, G.F. and Olson, M.V. 1985. An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82: 3756–3760.

    Article  CAS  Google Scholar 

  21. Chu, G., Vollrath, D. and Davis, R.W. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585.

    Article  CAS  Google Scholar 

  22. Erhart, E. and Hollenberg, C.P. 1983. The presence of a defective LEU2 gene on 2μ DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156: 625–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Woolford, C.A., Daniels, L.B., Park, F.J., Jones, E.W., Van Arsdell, J.N. and Innis, M.A. 1986. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol. Cell. Biol. 6: 2500–2510.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, A., Ozawa, F., Higashizaki, T. et al. Enhanced Secretion of Human Nerve Growth Factor from Saccharomyces cerevisiae using an Advanced δ–Integration System. Nat Biotechnol 9, 1382–1385 (1991). https://doi.org/10.1038/nbt1291-1382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1291-1382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing