Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Engineered Resistance to Tomato Spotted Wilt Virus, a Negative–Strand RNA Virus

Abstract

For a growing number of positive–strand RNA viruses, it has been demonstrated that transformation of host plants with the viral coat protein gene confers resistance to the corresponding virus. Thus far, successful transformation strategies to obtain resistance to negative–strand RNA viruses have not been reported. Here we show that genetically engineered resistance can be obtained to tomato spotted wilt virus, an enveloped virus with a negative–strand RNA genome, by transforming tobacco with the gene encoding the viral nucleocapsid protein, an internal RNA–binding protein. This approach may be useful for producing plants resistant to infection by other negative–strand viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sakimura, K. 1962. The present status of thrips-borne viruses, p. 33–40. In: Biological Transmission of Disease Agents. K. Maramorosch (Ed.). Academic Press, NY.

    Chapter  Google Scholar 

  2. Paliwal, Y.C. 1974. Some properties and thrips transmission of tomato spotted wilt virus in Canada. Can. J. Bot. 52: 1177–1182.

    Article  Google Scholar 

  3. Best, R.J. and Palk, B.A. 1964. Electron microscopy of strain E of tomato spotted wilt virus and comments on its probable biosynethesis. Virology 23: 445–460.

    Article  CAS  Google Scholar 

  4. Ie, T.S. 1964. An electron microscope study of tomato spotted wilt virus in the plant cell. Neth. J. Plant Pathol. 70: 114–115.

    Article  Google Scholar 

  5. Kitajima, E.W. 1965. Electron microscopy of vira-cabeca virus (Brazilian tomato spotted wilt virus) within the host cell. Virology 26: 89–99.

    Article  CAS  Google Scholar 

  6. Van den Hurk, J., Tas, P.W.L. and Peters, D. 1977. The ribonucleic acid of tomato spotted wilt virus. J. Gen. Virol. 36: 81–91.

    Article  Google Scholar 

  7. Mohamed, N.A. 1981. Isolation and characterization of subviral structures from tomato spotted wilt virus. J. Gen. Virol. 53: 197–206.

    Article  CAS  Google Scholar 

  8. Peters, D., Avila, A.C. de, Kitajima, E.W., Resende, R. de O., De Haan, P. and Goldbach, R. 1991. An overview of tomato spotted wilt virus, p. 1–14. In: Virus-Thrips-Plant Interactions of TSWV, Proc. USDA workshop, Beltsville, MD. H-.T. Hsu and R. H. Lawson, (Eds.). Nat. Tech. Inf. Serv. Springfield, VA.

    Google Scholar 

  9. De Haan, P., Wagemakers, L., Peters, D. and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71: 1001–1007.

    Article  CAS  Google Scholar 

  10. Giorgi, C., Accardi, L., Nicoletti, L., Gro, M.C., Takehara, K., Hilditch, C., Morikawa, S. and Bishop, D.H.L. 1991. Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. Virology 180: 738–753.

    Article  CAS  Google Scholar 

  11. De Haan, P., Kormelink, R., Resende, R. de O., Van Poelwijk, F., Peters, D. and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71: 2207–2216.

    Article  Google Scholar 

  12. Elliott, R.M. 1990. Molecular biology of the Bunyaviridae. J. Gen. Virol. 71: 501–522.

    Article  CAS  Google Scholar 

  13. Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K. and Yokohama, T. 1984. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis. 68: 1006–1008.

    Article  Google Scholar 

  14. Barnes, L.W. and Halliwell, R.S. 1985. Tomato spotted wilt virus infecting begonia hybrids in Texas. Plant Dis. 69: 613.

    Article  Google Scholar 

  15. Reddick, B.B., Hadden, C.H., Bost, S.C. and Newman, M.A. 1987. First report of tomato spotted wilt virus in Tennessee. Plant Dis. 71: 376.

    Article  Google Scholar 

  16. Allen, W.R. and Matteoni, J.A. 1988. Cyclamen ringspot: Epidemics in Ontario greenhouses caused by the tomato spotted wilt virus. Can. J. Plant Pathol. 10 : 41–46.

    Article  Google Scholar 

  17. Brown, L.G. 1988. Tomato spotted wilt virus in ornamentals. Plant Pathol. circ. 313.

  18. Mantel, W.P. and Van de Vrie, M. 1988. The Western flower thrips Frankliniella occidentalis, a new thrips species causing damage in protected cultures in the Netherlands. Ent. Ber., Amst. 48: 140–144.

    Google Scholar 

  19. Gebré-Selassie, K., Chabriere, C. and Marchoux, G. 1989. Un virus qui se réveille. Phytoma 410: 30–35.

    Google Scholar 

  20. Cho, J.J., Mau, R.F.L., Gonsalves, D. and Mitchell, W.C. 1986. Reservoir weed hosts of tomato spotted wilt virus. Plant Dis. 70: 1014–1017.

    Article  Google Scholar 

  21. Smith, P.G. and Gardner, M.W. 1951. Resistance in tomato to the spotted wilt virus. Phytopathology 41: 257–260.

    Google Scholar 

  22. Finlay, K.W. 1953. Inheritance of spotted wilt resistance in the tomato. Austr. J. Biol. Sci. 6: 153–163.

    Article  CAS  Google Scholar 

  23. Borchers, E.A. 1956. A study of the nature of resistance of the Mignonette variety of lettuce to the tomato spotted wilt virus. PhD. Thesis, University of California. Davis, California.

    Google Scholar 

  24. Holmes, F.O. 1958. A single-gene resistance test for viral relationship as applied to strains of spotted wilt virus. Virology 5: 382–390.

    Article  CAS  Google Scholar 

  25. Best, R.J. 1968. Tomato spotted wilt virus. Adv. Virus Res. 13: 65–145.

    Article  CAS  Google Scholar 

  26. Moldovan, M.YA. and Chokan, N.G. 1972. Resistance of wild species of Nicotiana to spotted wilt (Lycopersicon virus 3 (Smith)). Izv. Akad. Nauk Mold. SSR. Ser. Biol. Khim. Nauk 1972: 38–44.

    Google Scholar 

  27. Vinogradov, V.A., Trofimova, L.I. and Sarychev, Y.F. 1982. Field resistance of varieties, hybrids and chemical mutants of tobacco to tobacco thrips and tomato spotted wilt virus. Tabak 1982: 43–44, no. 3.

    Google Scholar 

  28. Cupertino, F.P., Avila de, A.C., Araujo, M.T. and Maluf, W.R. 1986. Sources of resistance to tomato spotted wilt virus in Lycopersicon. Fitopatologia Brasileira 11: 330–331.

    Google Scholar 

  29. O'Malley, P.J. and Hartmann, R.W. 1989. Resistance to tomato spotted wilt virus in lettuce. Hort. Science 24: 360–362.

    Google Scholar 

  30. Paterson, R.G., Scott, S.J. and Gergerich, R.C. 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43: 173–178.

    Article  Google Scholar 

  31. Ihara, T., Matsuura, Y. and Bishop, D.H.L. 1985. Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunyaviridae). Virology 147: 317–325.

    Article  CAS  Google Scholar 

  32. Beaton, A.R. and Krug, R.M. 1986. Transcription antitermination during influenza virus template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc. Natl. Acad. Sci. USA. 83: 6282–6286.

    Article  CAS  Google Scholar 

  33. Franze-Fernandez, M.T., Zetina, C., Iapalucci, S., Lucero, M.A., Bouissou, C., Lopez, R., Rey, O., Daheli, M., Cohen, G.N. and Zakin, M.M. 1987. Molecular structure and early events in the replication of Tacaribe arenavirus S RNA. Virus Res. 7: 309–324.

    Article  CAS  Google Scholar 

  34. Vidal, S. and Kolakofski, D. 1989. Modified model for the switch from Sendai virus transcription to replication. J. Virol. 63: 1951–1958.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C. and Wilson, T.M.A. 1987. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl. Acid Res. 15: 8693–8711.

    Article  CAS  Google Scholar 

  36. Avila, A.C. de Huguenot, C., Resende, R. de O., Kitajima, E.W., Goldbach, R.W. and Peters, D. 1990. Serological differentiation of 20 isolates of tomato spotted wilt virus. J. Gen. Virol. 71: 2801–2807.

    Article  Google Scholar 

  37. Benfey, P.N., Ren, L. and Chua, N.-H. 1989. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9: 1677–1684.

    Article  Google Scholar 

  38. Benfey, P.N., Ren, L. and Chua, N.-H. 1989. Combinatorial and synergistic properties of CaMV 35S subdomains. EMBO J. 9: 1685–1696.

    Article  Google Scholar 

  39. Beachy, R.N., Loesch-Fries, S. and Tumer, N.E. 1990. Coat protein-mediated resistance against virus infection. Ann. Rev. Phytopathol. 28: 451–474.

    Article  CAS  Google Scholar 

  40. Hemenway, C., Haley, L., Kaniewski, W.K., Lawson, E.C., O'Connell, K.M., Sanders, P.R., Thomas, P.E. and Tumer, N.E. 1990. Genetically engineered resistance: transgenic plants, p. 347–362. In: Plant Viruses. Vol. 2: Pathology. C. L. Mandahar, (Ed.). CRC Press, Boca Raton, FL.

    Google Scholar 

  41. Tas, P.W.L., Boerjan, M.L. and Peters, D. 1977. The structural proteins of tomato spotted wilt virus. J. Gen. Virol. 36: 267–279.

    Article  Google Scholar 

  42. Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (Eds.). 1990. Current Protocols in Molecular Biology. Green Publishing and Wiley-Interscience, NYC, NY.

    Google Scholar 

  43. Bevan, M. 1984. Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  44. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary vector system based on separation of vir and T- region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  45. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. USA. 80: 7347–7351.

    Article  Google Scholar 

  46. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  47. Logemann, J., Schell, J. and Willmitzer, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163: 16–20.

    Article  CAS  Google Scholar 

  48. Resende, R. de O., Avila, A.C. de, Goldbach, R.W. and Peters, D. 1991. Detection of tomato spotted wilt virus using polyclonal antisera in double antibody sandwich (DAS) ELISA and cocktail ELISA. J. Phytopathol. 132: 46–56.

    Article  CAS  Google Scholar 

  49. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  50. Ie, T.S. 1970. Tomato spotted wilt virus. CMI/AAB Descr. of Plant Viruses 39.

    Google Scholar 

  51. Francki, R.I.B., Milne, R.G. and Hatta, T. 1985. Atlas of Plant Viruses, Vol. 1. CRC Press, Boca Raton, FL.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gielen, J., de Haan, P., Kool, A. et al. Engineered Resistance to Tomato Spotted Wilt Virus, a Negative–Strand RNA Virus. Nat Biotechnol 9, 1363–1367 (1991). https://doi.org/10.1038/nbt1291-1363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1291-1363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing