Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon

Abstract

We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging–deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli β–galactosidase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bishop, D.H.L. 1990. Gene expression using insect cells and viruses, p. 62–67. In: Current Opinion in Biotechnology. M. Rosenberg and B. Moss (Eds). Current Opinion Ltd., London.

    Google Scholar 

  2. Moss, B. 1990. Regulation of Vaccinia virus transcription. Ann. Rev. Biochem. 59: 661–688.

    Article  CAS  Google Scholar 

  3. Moss, B., Elroy-Stein, O., Mizukami, T., Alexander, W.A. and Fuerst, T.R. 1990. New mammalian expression vectors. Nature 348 :91–92.

    Article  CAS  Google Scholar 

  4. Garoff, H., Kondor-Koch, C. and Riedel, H. 1982. Structure and assembly of alphaviruses. Curr. Top. Microbiol. Immunol. 99: 1–50.

    CAS  PubMed  Google Scholar 

  5. Simons, K. and Fuller, S. 1987. The budding of enveloped viruses: A paradigm for membrane sorting?, p. 139–150. In: Biological Organization: Macromolecular Interactions at High Resolution. R. K. Burnett and R. H. Vogel (Eds). Academic Press, New York.

    Google Scholar 

  6. Strauss, E.G. and Strauss, J.H. 1986. Structure and replication of the alphavirus genome, p. 35–90. In: The Togaviridae and Flaviviridae. S. S. Schlesinger and M.J. Schlesinger (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  7. Schlesinger, S.S. and Schlesinger, M.J. (Eds.). 1986. The Togaviridae and Flaviviridae, p. 453. Plenum Press, New York.

    Book  Google Scholar 

  8. Xiong, C., Levis, R., Shen, P., Schlesinger, S., Rice, C.M. and Huang, H.V. 1989. Sindbis virus: An efficient, broad host range vector for gene expression in animal cells. Science 243: 1188–1191.

    Article  CAS  Google Scholar 

  9. Wahlberg, J.M., Boere, W.A. and Garoff, H. 1989. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to mildly acidic pH during virus maturation. J. Virol. 63: 4991–4997.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garoff, H., Huylebroeck, D., Robinson, A., Tillman, U. and Liljeström, P. 1990. The signal sequence of the p62 protein of Semliki Forest virus is involved in initiation but not in completing chain translocation. J. Cell Biol. 111: 867–876.

    Article  CAS  Google Scholar 

  11. Metsikkö, K. and Garoff, H. 1990. Oligomers of the cytoplasmic domain of the p62/E2 membrane protein of Semliki Forest virus bind to the nucleocapsid in vitro. J. Virol. 64: 4678–4683.

    PubMed  PubMed Central  Google Scholar 

  12. Liljeström, P. and Garoff, H. 1991. Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J. Virol. 65: 147–154.

    PubMed  PubMed Central  Google Scholar 

  13. Lusa, S., Garoff, H. and Liljeström, P. 1991. Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. Virology 185: 000–000.

    Article  CAS  Google Scholar 

  14. Griffin, D.E. 1986. Alphavirus pathogenesis and immunity, p. 209–250. In The Togaviridae and Flaviviridae. S. S. Schlesinger and M. J. Schlesinger (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  15. Clark, H.F., Cohen, M.M. and Lunger, P.D. 1973. Comparative characterization of a C-type virus-producing cell line (VSW) and a virus-free cell line (VH2) from Vipera russelli. J. Natl. Cancer Inst. 51: 645–657.

    CAS  PubMed  Google Scholar 

  16. Leake, C.J., Varma, M.G.R. and Pudney, M. 1977. Cytopathic effect and plaque formation by Arboviruses in a continuous cell line (XTC-2) from the toad Xenopus laevis. J. Gen. Virol. 35: 335–339.

    Article  CAS  Google Scholar 

  17. Stollar, V. 1980. Defective interfering alphaviruses, p. 427–457. In: The Togaviruses. R. W. Schlesinger (Ed.). Academic Press, New York.

    Chapter  Google Scholar 

  18. L'Héritier, P. 1977. About the infection of Drosophila female germ line cells by Sigma viruses. Ann. Microbiol. (Inst. Pasteur) 128A: 119–131.

    Google Scholar 

  19. Liljeström, P., Lusa, S., Huylebroeck, D. and Garoff, H. 1991. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the 6,000-molecular-weight membrane protein modulates virus release. J. Virol. 65: 4107–4113.

    PubMed  PubMed Central  Google Scholar 

  20. Levis, R., Schlesinger, S. and Huang, H.V. 1990. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription. J. Virol. 64: 1726–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grakoui, A., Levis, R., Raju, R., Huang, H.V. and Rice, C.M. 1989. A cis-acting mutation in the Sindbis virus junction region which affects subgenomic RNA synthesis. J. Virol. 63: 5216–5227.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsiang, M., Weiss, B.G. and Schlesinger, S. 1988. Effects of 5′-terminal modifications on the biological activity of defective interfering RNAs of Sindbis virus. J. Virol. 62: 47–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Niesters, H.G.M. and Strauss, J.H. 1990. Mutagenesis of the conserved 51-nucleotide region of Sindbis virus. J. Virol. 64: 1639–1647.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Niesters, H.G. and Strauss, J.H. 1990. Defined mutations in the 5′ nontranslated sequence of Sindbis virus RNA. J. Virol. 64: 4162–4168.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levis, R., Weiss, B.G., Tsiang, M., Huang, H. and Schlesinger, S. 1986. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell 44: 137–145.

    Article  CAS  Google Scholar 

  26. Kuhn, R.J., Hong, Z. and Strauss, J.H. 1990. Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA. J. Virol. 64: 1465–1476.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weiss, B., Nitschko, H., Ghattas, I., Wright, R. and Schlesinger, S. 1989. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J. Virol. 63: 5310–5318.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Weiss, B.G. and Schlesinger, S. 1991. Recombination between Sindbis virus RNAs. J. Virol. 65: 4017–4025.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Peränen, J., Takkinen, K., Kalkkinen, N. and Kääriäinen, L. 1988. Semliki Forest virus-specific non-structural protein nsP3 is a phospho-protein. J. Gen. Virol. 69: 2165–2178.

    Article  Google Scholar 

  30. Boere, W.A.M., Harmsen, T., Vinje, J., Benaissa-Trouw, B.J., Kraaijeeveld, C.A. and Snippe, H. 1984. Identification of distinct antigenic determinants on Semliki Forest virus by using monoclonal antibodies with different antiviral activities. J. Virol. 52: 575–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Greiser-Wilke, I., Moennig, V., Kaaden, O.-R. and Figueiredo, L.T.M. 1989. Most alphaviruses share a conserved epitopic region on their nucleocapsid protein. J. Gen. Virol. 70: 743–748.

    Article  CAS  Google Scholar 

  32. Kondor, K.C., Bravo, R., Fuller, S.D., Cutler, D. and Garoff, H. 1985. Exocytotic pathways exist to both the apical and the basolateral cell surface of the polarized epithelial cell MDCK. Cell 43: 297–306.

    Article  Google Scholar 

  33. Zerial, M., Melançon, P., Schneider, C. and Garoff, H. 1986. The transmembrane segment of the human transferrin receptor functions as a signal peptide. EMBO J. 5: 1543–1550.

    Article  CAS  Google Scholar 

  34. Krieg, P., Strachman, R., Wallis, E., Tabe, L. and Colman, A. 1984. Efficient expression of cloned complementary DNAs for secretory proteins after injection into Xenopus oocytes. J. Mol. Biol. 180: 615–643.

    Article  CAS  Google Scholar 

  35. Casadaban, M.J., Martinez-Arias, A., Shapira, S.K. and Chou, J. 1983. β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Meth. Enzymol. 65: 293–308.

    Article  Google Scholar 

  36. Silhavy, T.J., Berman, M.L. and Enquist, L.W. 1984. Experiments with Gene Fusions, p. 303. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  37. Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108: 229–241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljeström, P., Garoff, H. A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon. Nat Biotechnol 9, 1356–1361 (1991). https://doi.org/10.1038/nbt1291-1356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1291-1356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing