Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Development of Expression Vectors for Transgenic Fish

Abstract

Genetic alteration of fish is important for aquatic biotechnology as well as for investigating molecular interactions that occur during vertebrate development. The numerous, large, transparent, and externally fertilized eggs of many fish species make them ideally suitable for genetic manipulation, especially for production of trans-genic animals. Genetic engineering offish requires suitable expression vectors. Accordingly, we developed two fish expression vectors, FV-1 and FV-2, which contain the proximal promoter and enhancer regulatory elements of the carp β-actin gene and the polyadenylation signal from the salmon growth hormone gene. The two fish expression vectors were tested in microinjected fish eggs and in tissue cultured fish and mammalian cells. These two “all-fish” expression vectors should be useful for genetic engineering of fish and have been used with growth-enhancing genes in transgenic fish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fisheries Department, 1988. FAO Yearbook. Food and Agricultural Organization of the United Nations.

  2. Powers, D. 1989. Fish as model systems. Science 246: 352–358.

    Article  CAS  Google Scholar 

  3. Streisinger, G., Walker, C., Dower, N., Knauber, D. and Singer, F. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio) Nature 291: 293–296.

    Article  CAS  Google Scholar 

  4. Kimmel, C.D. 1989. Genetics and early development of zebrafish. Trends in Genetics 5: 283–288.

    Article  CAS  Google Scholar 

  5. Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Brinberg, N.C. and Evans, R.M. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothioneine-growth hormone fusion genes. Nature 300: 611–615.

    Article  CAS  Google Scholar 

  6. Hew, C.L. Transgenic fish: Present status and future directions. 1989. Fish Physiol. Biochem. 7: 409–413.5.

    Article  CAS  Google Scholar 

  7. Zhu, Z., Li, G., He, L., Chen, S. 1985. Novel gene transfer into the fertilized eggs of gold fish. Z. Angew. Ichthyol. 1: 31–34.

    Article  CAS  Google Scholar 

  8. Dunham, R.A. and Eash, J. 1987. Transfer of the metallothioneine-human growth hormone fusion gene into channel catfish. Trans. American Fisheries Society 116: 87–91.

    Article  CAS  Google Scholar 

  9. Maclean, N., Penman, D. and Zhu, Z. 1987. Introduction of novel genes into fish. Bio/Technology 5: 257–261.

    Article  CAS  Google Scholar 

  10. McEvoy, T., Stack, M., Keane, B., Barry, T., Screenan, J. and Gannon, F. 1988. The expression of a foreign gene in salmon embryos. Aquaculture 68: 27–37.

    Article  Google Scholar 

  11. Brem, G., Brenig, B., Horstgen-Schwark, G. and Winnacker, E.-L. 1988. Gene transfer in tilapia (Oreochromis niloticus) Aquaculture 68: 209–219.

    Article  CAS  Google Scholar 

  12. Yoon, S.J., Hallerman, E., Gross, M., Liu, Z., Schneider, J., Faras, A., Hackett, P.B., Kapuscinski, A. and Guise, K. 1990. Transfer of the gene for neomycin resistance into goldfish, (Carassius auratus). Aquaculture 85: 21–33.

    Article  CAS  Google Scholar 

  13. Stuart, G.W., McMurry, J.V. and Westerfield, M. 1988. Replication, integration, and stable germ line transmission of foreign sequences into early zebrafish embryos. Development 103: 403–412.

    CAS  PubMed  Google Scholar 

  14. Liu, Z., Zhu, Z., Roberg, K., Faras, A., Guise, K., Kapuscinski, A. and Hackett, P.B. 1989. The β-actin gene of carp (Ctenopharyngodon idella). Nucleic Acids Res. 14: 5850.

    Article  Google Scholar 

  15. Liu, Z., Moav, B., Faras, A., Guise, K., Kapuscinski, A. and Hackett, P.B. 1990. Functional analysis of the transcriptional control elements of the β-actin gene of carp. Mol. Cell Biol. 10: 3432–3440.

    Article  CAS  Google Scholar 

  16. Hew, C.L., Trinh, K.Y., Du, S.J. and Song, S. 1989. Molecular cloning and expression of salmon pituitary hormones. Fish Physiol. Biochem. 7: 375–380.

    Article  CAS  Google Scholar 

  17. Gorman, G.M., Merlino, G.T., Willingham, M.C., Pastan, I. and Howard, B.H. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79: 6777–6781.

    Article  CAS  Google Scholar 

  18. Gorman, C., Moffat, L. and Howard, B. 1982. Recombinant genomes which express chloramphenicol acetryltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.

    Article  CAS  Google Scholar 

  19. Moav, B., Liu, Z., Moav, N.L., Gross, M.L., Kapuscinski, A.P., Faras, A.J., Guise, K.S. and Hackett, P.B. 1990. Expression of heterologous genes in transgenic fish. In: Transgenic Fish. C. Hew (Ed.). World Scientific Pub. Co., Singapore. In press.

    Google Scholar 

  20. Voellmy, R., Ahmed, A., Schiller, P., Bromley, P. and Rungger, D. 1985. Isolation and functional analysis of a human 70,000-Dalton heat shock protein gene segment. Proc. Natl. Acad. Sci. USA. 82: 4949–4953.

    Article  CAS  Google Scholar 

  21. Lopata, M.A., Cleveland, D.W. and Webb, B.S. 1984. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shork treatment. Nucleic Acids Res. 12: 5707–5717.

    Article  CAS  Google Scholar 

  22. Graham, F.L. and van der Eb, A.J. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.

    Article  CAS  Google Scholar 

  23. Chu, G. and Sharp, P.A. 1981. SV40 DNA transfection of cells in suspension: analysis of the efficiency of transfection and translation of T-antigen. Gene 13: 197–202.

    Article  CAS  Google Scholar 

  24. DePonti-Zilli, L., Seiler-Tuyns, A. and Paterson, B.M. 1988. A 40-base-pair sequence in the 3′ end of the β-actin gene regulates β-actin mRNA transcription during myogenesis. Proc. Natl. Acad. Sci. USA. 85: 1389–1393.

    Article  CAS  Google Scholar 

  25. Gunning, P., Leavitt, J., Muscat, G., Ng, S.-Y. and Kedes, L. 1987. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA. 84: 4831–5835.

    Article  CAS  Google Scholar 

  26. Liu, Z., Zhu, Z., Roberg, K., Faras, A., Guise, K., Kapuscinski, A. and Hackett, P. 1990. The isolation and characterization of the β-actin gene of carp (Carprinus carpio). DNA Sequence in press.

    Google Scholar 

  27. Melloul, D.D., Aloni, B., Calvo, J., Yaffe, D. and Nudel, U. 1984. Developmentally regulated expression of chimeric genes containing muscle actin DNA sequences in transfected myogenic cells. EMBO J. 3: 983–990.

    Article  CAS  Google Scholar 

  28. Lindquist, S. 1986. The heat shock response. Ann. Rev. Biochem. 55: 1151–1191.

    Article  CAS  Google Scholar 

  29. Holmgren, R., Corces, V., Morimoto, R., Blackman, R. and Meselson, M. 1981. Sequence homologies in the 5′ regions of four Drosophila heat-shock genes. Proc. Natl. Acad. Sci. USA. 78: 3775–3778.

    Article  CAS  Google Scholar 

  30. Parker, C.S. and Topol, J. 1984. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37: 273–283.

    Article  CAS  Google Scholar 

  31. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  32. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557–580.

    Article  CAS  Google Scholar 

  33. Vieira, J. and Messing, J. 1987. Production of single-stranded plasmid DNA. Meth. Enzymol. 153: 3–11.

    Article  CAS  Google Scholar 

  34. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

  35. Dretzen, G., Bellard, M., Sassone-Corsi, P. and Chambon, P. 1981. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal. Biochem. 112: 295–298.

    Article  CAS  Google Scholar 

  36. Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Moav, B., Faras, A. et al. Development of Expression Vectors for Transgenic Fish. Nat Biotechnol 8, 1268–1272 (1990). https://doi.org/10.1038/nbt1290-1268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1290-1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing