Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Relating protein pharmacology by ligand chemistry

Abstract

The identification of protein function based on biological information is an area of intense research. Here we consider a complementary technique that quantitatively groups and relates proteins based on the chemical similarity of their ligands. We began with 65,000 ligands annotated into sets for hundreds of drug targets. The similarity score between each set was calculated using ligand topology. A statistical model was developed to rank the significance of the resulting similarity scores, which are expressed as a minimum spanning tree to map the sets together. Although these maps are connected solely by chemical similarity, biologically sensible clusters nevertheless emerged. Links among unexpected targets also emerged, among them that methadone, emetine and loperamide (Imodium) may antagonize muscarinic M3, α2 adrenergic and neurokinin NK2 receptors, respectively. These predictions were subsequently confirmed experimentally. Relating receptors by ligand chemistry organizes biology to reveal unexpected relationships that may be assayed using the ligands themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparing similar and dissimilar ligand sets to that of DHFR.
Figure 2: Similarity maps for 246 enzymes and receptors.
Figure 3: Comparison of sequence and ligand-based protein similarity.
Figure 4: Testing the off-target activities of methadone, loperamide, and emetine.

Similar content being viewed by others

References

  1. Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    Article  CAS  Google Scholar 

  2. Kroeze, W.K., Kristiansen, K. & Roth, B.L. Molecular biology of serotonin receptors structure and function at the molecular level. Curr. Top. Med. Chem. 2, 507–528 (2002).

    Article  CAS  Google Scholar 

  3. Ebert, B., Andersen, S. & Krogsgaard-Larsen, P. Ketobemidone, methadone and pethidine are non-competitive N-methyl-D-aspartate (NMDA) antagonists in the rat cortex and spinal cord. Neurosci. Lett. 187, 165–168 (1995).

    Article  CAS  Google Scholar 

  4. Callahan, R.J., Au, J.D., Paul, M., Liu, C. & Yost, C.S. Functional inhibition by methadone of N-methyl-D-aspartate receptors expressed in Xenopus oocytes: stereospecific and subunit effects. Anesth. Analg. 98, 653–659 (2004).

    Article  CAS  Google Scholar 

  5. Krueger, K.E. Peripheral-type benzodiazepine receptors: a second site of action for benzodiazepines. Neuropsychopharmacology 4, 237–244 (1991).

    CAS  PubMed  Google Scholar 

  6. Finlayson, K., Witchel, H.J., McCulloch, J. & Sharkey, J. Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur. J. Pharmacol. 500, 129–142 (2004).

    Article  CAS  Google Scholar 

  7. Schreiber, S.L. Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 1, 64–66 (2005).

    Article  CAS  Google Scholar 

  8. Johnson, M.A. & Maggiora, G.M. Concepts and applications of molecular similarity. (Wiley, New York; 1990).

    Google Scholar 

  9. Matter, H. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 40, 1219–1229 (1997).

    Article  CAS  Google Scholar 

  10. Whittle, M., Gillet, V.J., Willett, P., Alex, A. & Loesel, J. Enhancing the effectiveness of virtual screening by fusing nearest neighbor lists: a comparison of similarity coefficients. J. Chem. Inf. Comput. Sci. 44, 1840–1848 (2004).

    Article  CAS  Google Scholar 

  11. Willett, P. Searching techniques for databases of two- and three-dimensional chemical structures. J. Med. Chem. 48, 4183–4199 (2005).

    Article  CAS  Google Scholar 

  12. Paolini, G.V., Shapland, R.H.B. & v Hoorn, W.P. Mason, J.S. & Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).

    Article  CAS  Google Scholar 

  13. Vieth, M. et al. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

    Article  CAS  Google Scholar 

  14. Izrailev, S. & Farnum, M.A. Enzyme classification by ligand binding. Proteins 57, 711–724 (2004).

    Article  CAS  Google Scholar 

  15. Bender, A. et al. “Bayes affinity fingerprints” improve retrieval rates in virtual screening and define orthogonal bioactivity space: when are multitarget drugs a feasible concept? J. Chem. Inf. Model. 46, 2445–2456 (2006).

    Article  CAS  Google Scholar 

  16. Nidhi, Glick, M., Davies, J.W. & Jenkins, J.L. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46, 1124–1133 (2006).

    Article  CAS  Google Scholar 

  17. Steindl, T.M., Schuster, D., Laggner, C. & Langer, T. Parallel screening: a novel concept in pharmacophore modeling and virtual screening. J. Chem. Inf. Model. 46, 2146–2157 (2006).

    Article  CAS  Google Scholar 

  18. Schuffenhauer, A., Floersheim, P., Acklin, P. & Jacoby, E. Similarity metrics for ligands reflecting the similarity of the target proteins. J. Chem. Inf. Comput. Sci. 43, 391–405 (2003).

    Article  CAS  Google Scholar 

  19. Horvath, D. & Jeandenans, C. Neighborhood behavior of in silico structural spaces with respect to in vitro activity spaces-a novel understanding of the molecular similarity principle in the context of multiple receptor binding profiles. J. Chem. Inf. Comput. Sci. 43, 680–690 (2003).

    Article  CAS  Google Scholar 

  20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  21. Karlin, S. & Altschul, S.F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268 (1990).

    Article  CAS  Google Scholar 

  22. Pearson, W.R. Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84 (1998).

    Article  CAS  Google Scholar 

  23. Sheridan, R.P. & Miller, M.D. A Method for Visualizing Recurrent Topological Substructures in Sets of Active Molecules. J. Chem. Inf. Comput. Sci. 38, 915–924 (1998).

    Article  CAS  Google Scholar 

  24. Bradshaw, J. & Sayle, R.A. Some thoughts on significant similarity and sufficient diversity. Presented at the 1997 EuroMUG meeting, 7–8 October 7–8, 1997, Verona, Italy. <http://www.daylight.com/meetings/emug97/ Bradshaw/Significant_Similarity/Significant_Similarity.html>.

  25. Hert, J. et al. Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J. Chem. Inf. Comput. Sci. 44, 1177–1185 (2004).

    Article  CAS  Google Scholar 

  26. Hert, J. et al. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 46, 462–470 (2006).

    Article  CAS  Google Scholar 

  27. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  28. Sheridan, R.P. & Kearsley, S.K. Why do we need so many chemical similarity search methods? Drug Discov. Today 7, 903–911 (2002).

    Article  Google Scholar 

  29. Goodman, L.S., Gilman, A., Brunton, L.L., Lazo, J.S. & Parker, K.L. Goodman & Gilman's The Pharmacological Basis Of Therapeutics, edn. 11 (McGraw-Hill, New York; 2006).

    Google Scholar 

  30. Cleves, A.E. & Jain, A.N. Robust ligand-based modeling of the biological targets of known drugs. J. Med. Chem. 49, 2921–2938 (2006).

    Article  CAS  Google Scholar 

  31. DRUGDEX (see Methadone) (Thomson Micromedex, Greenwood Village, Colorado, 2006). <http://www.thomsonhc.com>.

  32. de Vos, J.W., Geerlings, P.J., van den Brink, W., Ufkes, J.G. & van Wilgenburg, H. Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur. J. Clin. Pharmacol. 48, 361–366 (1995).

    Article  CAS  Google Scholar 

  33. DRUGDEX (see Emetine) (Thomson Micromedex, Greenwood Village, Colorado; 2006). <http://www.thomsonhc.com>

  34. Kojima, S., Ikeda, M. & Kamikawa, Y. Loperamide inhibits tachykinin NK3-receptor-triggered serotonin release without affecting NK2-receptor-triggered serotonin release from guinea pig colonic mucosa. J. Pharmacol. Sci. 98, 175–180 (2005).

    Article  CAS  Google Scholar 

  35. MDL Drug Data Report, 2006.1 (MDL Information Systems Inc., San Leandro, CA, 2006).

  36. Schuffenhauer, A. et al. An ontology for pharmaceutical ligands and its application for in silico screening and library design. J. Chem. Inf. Comput. Sci. 42, 947–955 (2002).

    Article  CAS  Google Scholar 

  37. International Union of Biochemistry and Molecular Biology, Nomenclature Committee & Webb, E.C. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union Of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes (Academic Press, San Diego; 1992).

  38. James, C., Weininger, D. & Delany, J. Daylight Theory Manual (Daylight Chemical Information Systems Inc., Mission Viejo, CA; 1992–2005).

  39. Willett, P. Similarity and Clustering in Chemical Information Systems (Research Studies Press; Wiley, Letchworth, Hertfordshire, England; New York; 1987).

    Google Scholar 

  40. Brown, R.D. & Martin, Y.C. Use of structure Activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sc.i 36, 572–584 (1996).

    Article  CAS  Google Scholar 

  41. Chen, X. & Reynolds, C.H. Performance of similarity measures in fragment-based similarity searching: comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci. 42, 1407–1414 (2002).

    Article  CAS  Google Scholar 

  42. Jones, E., Oliphant, T. & Peterson, P. SciPy: Open Source Scientific Tools for Python. (2001). <http://www.scipy.org/>.

  43. Kruskal, J. On the shortest spanning subtree and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956).

    Article  Google Scholar 

  44. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  45. Pavlidis, P. & Noble, W.S. Matrix2png: a utility for visualizing matrix data. Bioinformatics 19, 295–296 (2003).

    Article  CAS  Google Scholar 

  46. Rost, B. Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608 (2002).

    Article  CAS  Google Scholar 

  47. Roth, B.L. et al. Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl. Acad. Sci. USA 99, 11934–11939 (2002).

    Article  CAS  Google Scholar 

  48. Davies, M.A., Compton-Toth, B.A., Hufeisen, S.J., Meltzer, H.Y. & Roth, B.L. The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions? Psychopharmacology (Berl.) 178, 451–460 (2005).

    Article  CAS  Google Scholar 

  49. Chelala, J.L., Kilani, A., Miller, M.J., Martin, R.J. & Ernsberger, P. Muscarinic receptor binding sites of the M4 subtype in porcine lung parenchyma. Pharmacol. Toxicol. 83, 200–207 (1998).

    Article  CAS  Google Scholar 

  50. Takeda, Y. et al. Ligand binding kinetics of substance P and neurokinin A receptors stably expressed in Chinese hamster ovary cells and evidence for differential stimulation of inositol 1,4,5-trisphosphate and cyclic AMP second messenger responses. J. Neurochem. 59, 740–745 (1992).

    Article  CAS  Google Scholar 

  51. Wozniak, M. & Limbird, L.E. The three alpha 2-adrenergic receptor subtypes achieve basolateral localization in Madin-Darby canine kidney II cells via different targeting mechanisms. J. Biol. Chem. 271, 5017–5024 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by GM71896 (to B.K.S. and J.J.I.), Training Grant GM67547, a National Science Foundation graduate fellowship (to M.J.K.), the National Institute of Mental Health Psychoactive Drug Screening Program (B.L.R. and P.E.) and F32-GM074554 (to B.N.A.). We are grateful to Mark von Zastrow, Eswar Narayanan, Paul Valiant and Michael Mysinger for many thoughtful suggestions and to Jerome Hert, Veena Thomas and Kristin Coan for reading this manuscript. We also thank Elsevier MDL for use of the MDDR, and Daylight for the Daylight toolkit.

Author information

Authors and Affiliations

Authors

Contributions

J.J.I., B.K.S. and M.J.K. developed the ideas for SEA, M.J.K. wrote the SEA algorithms and undertook the calculations reported here, with some assistance from J.J.I. B.L.R. and P.E. performed the methadone assays, B.N.A. performed the emetine and loperamide assays, and B.K.S. and M.J.K. wrote the manuscript with editorial review from J.J.I. and B.L.R.

Corresponding authors

Correspondence to John J Irwin or Brian K Shoichet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Statistical model fits for MDDR. (PDF 405 kb)

Supplementary Figure 2

Set recovery in database search after TC-chemotype filtering. (PDF 72 kb)

Supplementary Figure 3

Set recovery in database search with progressive random removal of compounds from query set. (PDF 72 kb)

Supplementary Figure 4

Set recovery in database search over 246 MDDR classes. (PDF 79 kb)

Supplementary Figure 5

Choice of threshold parameter. (PDF 171 kb)

Supplementary Figure 6

PSI-BLAST heat map of MDDR activity class target protein sequences compared against themselves. (PDF 964 kb)

Supplementary Figure 7

SEA heat map of MDDR activity classes compared against themselves. (PDF 579 kb)

Supplementary Table 1

Expanded statistics for Table 1 and Table 2. (PDF 114 kb)

Supplementary Table 2

MDDR unrelated orphans. (PDF 71 kb)

Supplementary Table 3

Rankings of the correct MDDR activity class for each PubChem MeSH pharmacological action set by SEA and by MPS. (PDF 86 kb)

Supplementary Table 4

Loperamide and emetine functional assay data. (PDF 84 kb)

Supplementary Table 5

SEA statistical model fits. (PDF 91 kb)

Supplementary Methods (PDF 115 kb)

Supplementary Data (ZIP 1653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keiser, M., Roth, B., Armbruster, B. et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25, 197–206 (2007). https://doi.org/10.1038/nbt1284

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing