Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Use of Synchronous Site-Specific Recombination in Vivo to Regulate Gene Expression

Abstract

We have constructed a plasmid that carries the gene for T4 DNA ligase, the gene II promoter from bacteriophage m13, and analogues of attL and attR. attL and attR are substrates for site specific recombination catalyzed by the Int and Xis proteins of bacteriophage λ. The elements on this plasmid are arranged so that the promoter and gene are functionally isolated, but each is adjacent to an att site. In the presence of Int and Xis, provided by a thermoinducible defective λ prophage, the plasmid undergoes internal site specific recombination (rearrangement), one product of which contains the promoter and the gene juxtaposed in a functional arrangement. Prior to rearrangement, only trace amounts of T4 DNA ligase are produced in Escherichia coli cells harboring the plasmid. In contrast, three hours after the induction of rearrangement, T4 DNA ligase represents 20% of the soluble protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weisberg, R. A. and Landy, A. 1983. Site-specific recombination in phage lambda, p. 211–250. In: Lambda II. R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg (eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  2. Heffron, F., McCarthy, B.J., Ohtsubo, H., Ohtsubo, E. 1979. DNA sequence analysis of the transposon Tn3. Cell 18: 1153–1163.

    Article  CAS  Google Scholar 

  3. Kitts, P., Symington, L., Burke, M., Reed, R. and Sherratt, D. 1982. Transposon-specified site specific recombination. Proc. Nat. Acad. Sci. USA 79: 46–50.

    Article  CAS  Google Scholar 

  4. Bernard, O., Hozami, N. and Tonegawa, S. 1978. Sequences of mouse immunoglobin light chain genes before and after somatic changes. Cell 15: 1133–1144.

    Article  CAS  Google Scholar 

  5. Giphart-Gassler, M., Plasterk, R.H.A. and van de Putte, P. 1982. G inversion in bacteriophage Mu: a novel way of gene splicing. Nature 297: 339–342.

    Article  CAS  Google Scholar 

  6. Silverman, M., Zieg, J., Hilmen, M. and Simon, M. 1979. Phase variation in Salmonella: Genetic analysis of a recombinational switch. Proc. Nat. Acad. Sci. USA 76: 391–395.

    Article  CAS  Google Scholar 

  7. Bolivar, F., Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  Google Scholar 

  8. Goldberg, A.R. and Howe, M. 1969. New mutations in the S cistron of bacteriophage lambda affecting host cell lysis. Virology 38: 200–202.

    Article  CAS  Google Scholar 

  9. Wilson, G.G. and Murray, N.E. 1979. Molecular cloning of the DNA ligase gene from bacteriophage T4. I. Characterization of the recombinants. J. Mol. Biol. 132: 471–491.

    Article  CAS  Google Scholar 

  10. Hines, J.C. and Ray, D.S. 1980. Construction and characterization of new coliphage M13 cloning vectors. Gene 11: 207–218.

    Article  CAS  Google Scholar 

  11. Sutcliff, J.G. 1979. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43: 77–90.

    Article  Google Scholar 

  12. Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F. and Peterson, G.B. 1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162: 729–773.

    Article  CAS  Google Scholar 

  13. Armstrong, J., Brown, R.S. and Tsugita, A. 1983. Primary structure and genetic organization of phage T4 DNA ligase. Nucleic Acids Res. 11: 7145–7156.

    Article  CAS  Google Scholar 

  14. Van Wezenbeek, P., Hulsebos, T. and Schoenmakers, J.G.G. 1980. The nucleotide sequence of bacteriophage m13 DNA. Gene 11: 129–148.

    Article  CAS  Google Scholar 

  15. Backman, K., Chen, Y.-M. and Magasanik, B. 1981. Physical and genetic characterization of the glnA-glnG region of the Escherichia coli chromosome. Proc. Nat. Acad. Sci. USA 78: 3743–3747.

    Article  CAS  Google Scholar 

  16. Greer, H. 1975. The kil gene of bacteriophage lambda. Virol. 66: 589–604.

    Article  CAS  Google Scholar 

  17. Plasterk, R.H.A., Ilmer, T.A.M. and van de Putte, P. 1983. Site-specific recombination by gin of bacteriophage Mu: inversions and deletions. Virol. 127: 24–36.

    Article  CAS  Google Scholar 

  18. Bolivar, F. and Backman, K. 1979. Plasmids of Escherichia coli as cloning vectors. Meth. Enzymol. 68: 245–267.

    Article  CAS  Google Scholar 

  19. Miller, J.H. 1972. Experiment in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

  20. Knopf, K.-W. 1977. Simple isolation method and assay for T4 DNA ligase and characterization of the purified enzyme. Eur. J. Biochem. 73: 33–38.

    Article  CAS  Google Scholar 

  21. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  22. Tait, R.C., Rodriguez, R.L. and West, R.W. Jr. 1980. The rapid purification of T4 DNA ligase from a λT4 lig lysogen. J. Biol. Chem. 255: 813–815.

    CAS  Google Scholar 

  23. Sugiura, M. 1980. Purification of the T4 DNA ligase by Blue Sepharose chromatography. Analyt. Biochem. 108: 227–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Backman, K., O'Connor, M., Maruya, A. et al. Use of Synchronous Site-Specific Recombination in Vivo to Regulate Gene Expression. Nat Biotechnol 2, 1045–1049 (1984). https://doi.org/10.1038/nbt1284-1045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1284-1045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing