Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

Abstract

Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CLEM), a simple imaging approach that reduces photobleaching and phototoxicity two- to tenfold, depending on the fluorophore distribution in the object. By spatially controlling the light-exposure time, CLEM reduces the excitation-light dose without compromising image quality. We show that CLEM reduces photobleaching sevenfold in tobacco plant cells expressing microtubule-associated GFP-MAP4 and reduces production of reactive oxygen species eightfold and prolongs cell survival sixfold in HeLa cells expressing chromatin-associated H2B-GFP. In addition, CLEM increases the dynamic range of the fluorescence intensity at least twofold.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The concept and implementation of CLEM.
Figure 2: The quality of CLEM images.
Figure 3: CLEM reduces photobleaching, formation of reactive oxygen species (ROS) and phototoxicity.

References

  1. 1

    Wright, A., Bubb, W.A., Hawkins, C.L. & Davies, M.J. Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem. Photobiol. 76, 35–46 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Bartosz, G. Oxidative stress in plants. Acta Physiol. Plant. 19, 47–64 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Foyer, C.H., Lelandais, M. & Kunert, K.J. Photooxidative stress in plants. Physiol. Plant. 92, 696–717 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Bernas, T., Zarebski, M., Cook, R.R. & Dobrucki, J.W. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J. Microsc. 215, 281–296 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Song, L., Varma, C.A., Verhoeven, J.W. & Tanke, H.J. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys. J. 70, 2959–2968 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Song, L., van Gijlswijk, R.P., Young, I.T. & Tanke, H.J. Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry 27, 213–223 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Vrouenraets, M.B., Visser, G.W., Snow, G.B. & van Dongen, G.A. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 23, 505–522 (2003).

    CAS  PubMed  Google Scholar 

  8. 8

    Dixit, R. & Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 36, 280–290 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Martin, R.M., Leonhardt, H. & Cardoso, M.C. DNA labeling in living cells. Cytometry A 67, 45–52 (2005).

    Article  Google Scholar 

  10. 10

    Hsi, R.A., Rosenthal, D.I. & Glatstein, E. Photodynamic therapy in the treatment of cancer: current state of the art. Drugs 57, 725–734 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Sugden, J.K. Photochemistry of dyes and fluorochromes used in biology and medicine: some physicochemical background and current applications. Biotech. Histochem. 79, 71–90 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Stephens, D.J. & Allan, V.J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Rieder, C.L. & Khodjakov, A. Mitosis through the microscope: advances in seeing inside live dividing cells. Science 300, 91–96 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Sheppard, C.J.R., Gan, X., Gu, M. & Roy, M. Signal-to-noise in confocal microscopes. in Handbook of Biological Confocal Microscopy, edn. 2 (ed. Pawley, J.B.) 363–372 (Plenum Press, New York, 1995).

    Google Scholar 

  15. 15

    Centonze, V. & Pawley, J. Tutorial on practical confocal microscopy and use of the confocal test specimen. in Handbook of Biological Confocal Microscopy, edn. 2 (ed. Pawley, J.B.) 549–569 (Plenum Press, New York, 1995).

    Google Scholar 

  16. 16

    Manders, E.M.M. Werkwijze en inrichting voor het vormen van een afbeelding van een object. Patent NL1023440C (filed 16 May 2003, approved 3 January 2005).

  17. 17

    Manders, E.M.M. Method and apparatus for shaping an image of an object. Patent application WO2004102249 (2004).

  18. 18

    Zwier, J.M., Van Rooij, G.J., Hofstraat, J.W. & Brakenhoff, G.J. Image calibration in fluorescence microscopy. J. Microsc. 216, 15–24 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Eggeling, C., Widengren, J., Rigler, R. & Seidel, C.A.M. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal. Chem. 70, 2651–2659 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Molski, A. Statistics of the bleaching number and the bleaching time in single-molecule fluorescence spectroscopy. J. Chem. Phys. 114, 1142–1147 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Eggeling, C., Volkmer, A. & Seidel, C.A.M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6, 791–804 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Deschenes, L.A. & Bout, D.A.V. Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis. Chem. Phys. Lett. 365, 387–395 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Van Oostveldt, P., Verhaegen, F. & Messens, K. Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode. Cytometry 32, 137–146 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Rigaut, J.P. & Vassy, J. High-resolution three-dimensional images from confocal scanning laser microscopy. Quantitative study and mathematical correction of the effects from bleaching and fluorescence attenuation in depth. Anal. Quant. Cytol. Histol. 13, 223–232 (1991).

    CAS  PubMed  Google Scholar 

  25. 25

    Dhonukshe, P. & Gadella, T.W., Jr. Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Knight, M.M., Roberts, S.R., Lee, D.A. & Bader, D.L. Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am. J. Physiol. Cell Physiol. 284, C1083–C1089 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Jou, M.J., Jou, S.B., Chen, H.M., Lin, C.H. & Peng, T.I. Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J. Biomed. Sci. 9, 507–516 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Houtsmuller, A.B. Fluorescence recovery after photobleaching: application to nuclear proteins. Adv. Biochem. Eng. Biotechnol. 95, 177–199 (2005).

    CAS  PubMed  Google Scholar 

  31. 31

    Houtsmuller, A.B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

E.M.M.M., R.A.H., C.H.V.O., C.J.F.V.N. and T.W.J.G. were supported by the Amsterdam Genomics Centre (AmGC) of the University of Amsterdam, E.M.M.M. by the Dutch Technology Foundation (STW, ATF-7394); E.M.M.M., R.A.H. and T.W.J.G., by the EU integrated project “Molecular Imaging” (LSHG-CT-2003-503259); and P.B.D. and T.W.J.G., by the Netherlands Organization for Scientific Research (NWO, grant 805-47.012). We thank Merel Adjobo-Hermans, Joachim Goedhart and Bernd Rieger for technical assistance, G.J. Brakenhoff for scientific advice and Nikon Europe for providing microscope equipment.

Author information

Affiliations

Authors

Contributions

R.A.H., experimental data, engineering, computer simulations; C.H.V.O., electronic design and development; T.W.J.G., biofluorescence expertise; P.B.D., plant cell experiments; C.J.F.V.N., scientific and editorial management; E.M.M.M., inventor of CLEM and general team leader.

Corresponding author

Correspondence to E M M Manders.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Reduction of photobleaching and phototoxicity by CLEM depends of fluorophore distribution. (PDF 6740 kb)

Supplementary Video 1

CLEM strongly reduces photobleaching. Left: non-CLEM; Right: CLEM (MOV 1200 kb)

Supplementary Video 2

CLEM strongly reduces phototoxicity. Left: non-CLEM; Right: CLEM (MOV 9713 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoebe, R., Van Oven, C., Gadella, T. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25, 249–253 (2007). https://doi.org/10.1038/nbt1278

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing