Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library

Abstract

The utility of blue fluorescent protein (BFP) has been limited by its low quantum yield and rapid photobleaching. A library targeting residues neighboring the chromophore yielded a variant with enhanced quantum yield (0.55 versus 0.34), reduced pH sensitivity and a 40-fold increase in photobleaching half-life. This BFP, named Azurite, is well expressed in bacterial and mammalian cells and extends the palette of fluorescent proteins that can be used for imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening and characterization of BFP variants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  2. Cubitt, A.B. et al. Trends Biochem. Sci. 20, 448–455 (1995).

    Article  CAS  Google Scholar 

  3. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  4. Heim, R. & Tsien, R.Y. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  Google Scholar 

  5. Stauber, R.H. et al. Biotechniques 24, 462–466, 468–471 (1998).

    Article  CAS  Google Scholar 

  6. Ellenberg, J., Lippincott-Schwartz, J. & Presley, J.F. Trends Cell Biol. 9, 52–56 (1999).

    Article  CAS  Google Scholar 

  7. Lippincott-Schwartz, J. & Patterson, G.H. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  8. Park, S., Yang, X. & Saven, J.G. Curr. Opin. Struct. Biol. 14, 487–494 (2004).

    Article  CAS  Google Scholar 

  9. Dahiyat, B.I. & Mayo, S.L. Science 278, 82–87 (1997).

    Article  CAS  Google Scholar 

  10. Neylon, C. Nucleic Acids Res. 32, 1448–1459 (2004).

    Article  CAS  Google Scholar 

  11. Voigt, C.A., Mayo, S.L., Arnold, F.H. & Wang, Z.G. Proc. Natl. Acad. Sci. USA 98, 3778–3783 (2001).

    Article  CAS  Google Scholar 

  12. Hayes, R.J. et al. Proc. Natl. Acad. Sci. USA 99, 15926–15931 (2002).

    Article  CAS  Google Scholar 

  13. Wachter, R.M. et al. Biochemistry 36, 9759–9765 (1997).

    Article  CAS  Google Scholar 

  14. Treynor, T.P., Vizcarra, C.L., Nedelcu, D. & Mayo, S.L. Proc. Natl. Acad. Sci. USA (in the press).

  15. Bessette, P.H., Mena, M.A., Nguyen, A.W. & Daugherty, P.S. Methods Mol. Biol. 231, 29–37 (2003).

    CAS  PubMed  Google Scholar 

  16. Campbell, R.E. et al. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  17. Ellenberg, J., Lippincott-Schwartz, J. & Presley, J.F. Biotechniques 25, 838–842, 844–836 (1998).

    Article  CAS  Google Scholar 

  18. Kummer, A.D. et al. Chembiochem 3, 659–663 (2002).

    Article  CAS  Google Scholar 

  19. Mauring, K. et al. J. Phys. Chem. B 109, 12976–12981 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Dane, A. Nguyen, P. Bessette and C. Gottstein for helpful discussions and Alexander Mikhailovsky for assistance with fluorescence lifetime measurements, and acknowledge support from National Institutes of Health–National Institute of Biomedical Imaging and Bioengineering grant EB-000205.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M., T.P.T., S.L.M. and P.S.D. designed research, M.A.M. and T.P.T. performed research, T.P.T. and S.L.M. contributed computational tools, M.A.M., T.P.T. and P.S.D. analyzed data, and M.A.M. and P.S.D. wrote the paper.

Corresponding author

Correspondence to Patrick S Daugherty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Crystal structure of BFP with chromophore (blue) and targeted residues (red). (PDF 225 kb)

Supplementary Fig. 2

Photophysical characterization of BFP variants. (PDF 18 kb)

Supplementary Fig. 3

Fluorescence lifetime analysis of BFP mutants. (PDF 25 kb)

Supplementary Fig. 4

Fluorescence of BFP variants with varying pH. (PDF 14 kb)

Supplementary Fig. 5

Whole-cell fluorescence development of E. coli cells expressing Azurite and EGFP. (PDF 18 kb)

Supplementary Fig. 6

Non-denaturing polyacrylamide gel electrophoresis of BFP variants. (PDF 742 kb)

Supplementary Fig. 7

Alignment of wtGFP, BFP, A5, and Azurite Amino Acid Sequences. (PDF 31 kb)

Supplementary Fig. 8

Alignment of WT GFP, BFP, A5 and Azurite Amino Acid sequences. (PDF 30 kb)

Supplementary Table 1

Amino acid composition of BFP degenerate codon library (PDF 14 kb)

Supplementary Table 2

Degenerate codon library design for structurally targeted mutagenesis and isolated BFP variants (PDF 15 kb)

Supplementary Methods (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena, M., Treynor, T., Mayo, S. et al. Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24, 1569–1571 (2006). https://doi.org/10.1038/nbt1264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing