Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance

A Corrigendum to this article was published on 01 February 2007

Abstract

Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69159 and amiR-HC-Pro159 are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP159 targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69159 and amiR-HC-Pro159 from a dimeric pre-amiR-P69159/amiR-HC-Pro159 transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 °C, a temperature that compromises small interfering RNA–mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of amiRNA precursors and analysis of transgenic A. thaliana plants expressing amiRNAs.
Figure 2: Transgenic plants expressing amiR-P69159 and amiR-HC-Pro159 are resistant to TYMV and TuMV infection, respectively.
Figure 3: Effect of temperature on amiRNA production and virus resistance.

Similar content being viewed by others

References

  1. Kang, B.C., Yeam, I. & Jahn, M.M. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581–621 (2005).

    Article  CAS  Google Scholar 

  2. Carrington, J.C., Kasschau, K.D. & Johansen, L.K. Activation and suppression of RNA silencing by plant viruses. Virology 281, 1–5 (2001).

    Article  CAS  Google Scholar 

  3. Sanford, J.C. & Johnston, S.A. The concept of parasite-derived resistance-Deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113, 395–405 (1985).

    Article  Google Scholar 

  4. Abel, P.P. et al. Delay of disease development in transgenic plants that express the Tobacco mosaic virus coat protein gene. Science 232, 738–743 (1986).

    Article  CAS  Google Scholar 

  5. Tepfer, M. Risk assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40, 467–491 (2002).

    Article  CAS  Google Scholar 

  6. Palukaitis, P. & Zaitlin, M. Replicase-mediated resistance to plant virus disease. Adv. Virus Res. 48, 349–377 (1997).

    Article  CAS  Google Scholar 

  7. Baulcombe, D.C. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8, 1833–1844 (1996).

    Article  CAS  Google Scholar 

  8. Waterhouse, P.M., Graham, M.W. & Wang, M.B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13959–13964 (1998).

    Article  CAS  Google Scholar 

  9. Smith, H.A., Swaney, S.L., Parks, T.D., Wernsman, E.A. & Dougherty, W.G. Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6, 1441–1453 (1994).

    Article  CAS  Google Scholar 

  10. Helliwell, C.A. & Waterhouse, P.M. Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol. 392, 24–35 (2005).

    Article  CAS  Google Scholar 

  11. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, 642–652 (2004).

    Article  CAS  Google Scholar 

  12. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for post-transcriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    Article  CAS  Google Scholar 

  13. Dalmay, T., Horsefield, R., Braunstein, T.H. & Baulcombe, D.C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20, 2069–2078 (2001).

    Article  CAS  Google Scholar 

  14. Chen, J., Li, W.X., Xie, D., Peng, J.R. & Ding, S.W. Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell 16, 1302–1313 (2004).

    Article  CAS  Google Scholar 

  15. Kasschau, K.D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4, 205–217 (2003).

    Article  CAS  Google Scholar 

  16. Llave, C., Kasschau, K.D. & Carrington, J.C. Virus-encoded suppressor of post-transcriptional gene silencing targets a maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA 97, 13401–13406 (2000).

    Article  CAS  Google Scholar 

  17. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  18. Jones-Rhoades, M.W., Bartel, D.P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    Article  CAS  Google Scholar 

  19. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004).

    Article  CAS  Google Scholar 

  20. Prod'homme, D., Jakubiec, A., Tournier, V., Drugeon, G. & Jupin, I. Targeting of the Turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J. Virol. 77, 9124–9135 (2003).

    Article  CAS  Google Scholar 

  21. Mitchell, E.J. & Bond, J.M. Variation in the coat protein sequence of British isolates of Turnip yellow mosaic virus and comparison with previously published isolates. Arch. Virol. 150, 2347–2355 (2005).

    Article  CAS  Google Scholar 

  22. Tomimura, K., Gibbs, A.J., Jenner, C.E., Walsh, J.A. & Ohshima, K. The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent 'emergence' in east Asia. Mol. Ecol. 12, 2099–2111 (2003).

    Article  CAS  Google Scholar 

  23. Sanchez, F., Martinez-Herrera, D., Aguilar, I. & Ponz, F. Infectivity of Turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Res. 55, 207–219 (1998).

    Article  CAS  Google Scholar 

  24. Morch, M.D., Boyer, J.C. & Haenni, A.L. Overlapping open reading frames revealed by complete nucleotide sequencing of Turnip yellow mosaic virus genomic RNA. Nucleic Acids Res. 16, 6157–6173 (1988).

    Article  CAS  Google Scholar 

  25. Riechmann, J.L., Lain, S. & Garcia, J.A. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73, 1–16 (1992).

    Article  CAS  Google Scholar 

  26. Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  27. Alvarez, J.P. et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151 (2006).

    Article  CAS  Google Scholar 

  28. Simon-Mateo, C. & Garcia, J.A. MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J. Virol. 80, 2429–2436 (2006).

    Article  CAS  Google Scholar 

  29. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  Google Scholar 

  30. Boden, D. et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 23, 1154–1158 (2004).

    Article  Google Scholar 

  31. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  32. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  Google Scholar 

  33. Sun, D., Melegari, M., Sridhar, S., Rogler, C.E. & Zhu, L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41, 59–63 (2006).

    Article  CAS  Google Scholar 

  34. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. & Sablowski, R. A link between mRNA turnover and RNA interference in Arabidopsis. Science 306, 1046–1048 (2004).

    Article  CAS  Google Scholar 

  35. Souret, F.F., Kastenmayer, J.P. & Green, P.J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 15, 173–183 (2004).

    Article  CAS  Google Scholar 

  36. Szittya, G. et al. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 22, 633–640 (2003).

    Article  CAS  Google Scholar 

  37. Overhoff, M. et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J. Mol. Biol. 348, 871–881 (2005).

    Article  CAS  Google Scholar 

  38. Kameda, T., Ikegami, K., Liu, Y., Terada, K. & Sugiyama, T. A hypothermic-temperature-sensitive gene silencing by the mammalian RNAi. Biochem. Biophys. Res. Commun. 315, 599–602 (2004).

    Article  CAS  Google Scholar 

  39. Fortier, E. & Belote, J.M. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244 (2000).

    Article  CAS  Google Scholar 

  40. Rubio, T., Borja, M., Scholthof, H.B. & Jackson, A.O. Recombination with host transgenes and effects on virus evolution: an overview and opinion. Mol. Plant Microbe Interact. 12, 87–92 (1999).

    Article  CAS  Google Scholar 

  41. Hammond, J., Lecoq, H. & Raccah, B. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv. Virus Res. 54, 189–314 (1999).

    Article  CAS  Google Scholar 

  42. Aaziz, R. & Tepfer, M. Recombination in RNA viruses and in virus-resistant transgenic plants. J. Gen. Virol. 80, 1339–1346 (1999).

    Article  CAS  Google Scholar 

  43. Falk, B.W. & Bruening, G. Will transgenic crops generate new viruses and new diseases? Science 263, 1395–1396 (1994).

    Article  CAS  Google Scholar 

  44. Lin, S.S., Wu, H.W., Jan, F.J., Hou, R.F. & Yeh, S.D. Modifications of the HC-Pro of Zucchini yellow mosaic potyvirus for generation of attenuated mutants for cross protection against severe infection. Phytopathology (in press).

  45. Zhang, X., Garreton, V. & Chua, N.H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19, 1532–1543 (2005).

    Article  CAS  Google Scholar 

  46. Skotnicki, M.L., Mackenzie, A.M. & Gibbs, A.J. Turnip yellow mosaic virus variants produced from DNA clones encoding their genomes. Arch. Virol. 127, 25–35 (1992).

    Article  CAS  Google Scholar 

  47. Chung, M.H., Chen, M.K. & Pan, S.M. Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res. 9, 471–476 (2000).

    Article  CAS  Google Scholar 

  48. Voinnet, O., Lederer, C. & Baulcombe, D.C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 (2000).

    Article  CAS  Google Scholar 

  49. Chen, C.C. et al. Identification of Turnip mosaic virus isolates causing yellow stripe and spot on Calla Lily. Plant Dis. 87, 901–905 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.-S.L. was supported by a fellowship from Ministry of Education, Taiwan. K.-C.C. and H.-W.W. are visiting students from the National Chung-Hsing University, Taiwan. We thank Jun Chen for TYMV, Chin-Chih Chen for TuMV and TuMV-GFP; Mengdai Xu for technical assistance, Chan-Sen Wang and Xuning Wang for assistance with microarray analysis and statistical treatment of the results; and Enno Krebbers, Richard Broglie, Karen Broglie and Barbara Mazur for helpful suggestions and stimulating discussions. This work was supported by a grant from DUPONT to N.-H.C.

Author information

Authors and Affiliations

Authors

Contributions

N.-H.C. and J.L.R. first conceived the idea of using amiRNAs to regulate gene expression. Q.-W.N., S.-S.L. and J.L.R. designed the amiRNAs. Q.-W.N. generated the transgenic plants. S.-S.L, Q.-W.N., K.-C.C. and H.-W.N. performed the virus challenge and related experiments. S.-D.Y. provided specific strains of TuMV and TuMV-GFP and advice on experimental design. All authors discussed the results and commented on the manuscript, which was written by N.-H.C. and S.-S.L.

Corresponding author

Correspondence to Nam-Hai Chua.

Ethics declarations

Competing interests

Q.W.N., S.-S.L., J.L.R. & N.-H.C. are co-inventors on a patent application on the use of microRNAs to regulate plant gene expression and to confer virus resistance. The results described in this manuscript were used to support claims in the patent application.

Supplementary information

Supplementary Fig. 1

Transcript analysis of 6 predicted target genes of amiRNAs. (PDF 123 kb)

Supplementary Fig. 2

Transgenic plants expressing amiR-P69159 are resistant to TYMV infection. (PDF 64 kb)

Supplementary Fig. 3

Transgenic plants expressing amiR-HC-Pro159 are resistant to TuMV infection. (PDF 91 kb)

Supplementary Fig. 4

Expression of amiRNAs, endogenous miRNAs and ta-siRNA in WT and transgenic plants at 15 °C and 24 °C. (PDF 68 kb)

Supplementary Fig. 5

Alignment of amiR-P69159 and amiR-HC-Pro159 with P69 and HC-Pro sequences of different TYMV and TuMV strains. (PDF 274 kb)

Supplementary Table 1

Comparative microarray analysis of gene expression in WT and amiRNA transgenic plants. (PDF 65 kb)

Supplementary Table 2

Infectivity assay of amiR-TuCP159 transgenic plants challenged with TYMV or TuMV inocula. (PDF 17 kb)

Supplementary Table 3

Break-down of specific resistance amiR-P69159 and amiR-HC-Pro159 transgenic plants co-inoculated with TYMV and TuMV at 15 °C or 24 °C (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, QW., Lin, SS., Reyes, J. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24, 1420–1428 (2006). https://doi.org/10.1038/nbt1255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing