Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins

Abstract

Numerous biological processes involve the recognition of a specific pattern of binding sites on a target protein or surface. Although ligands displayed by disordered scaffolds form stochastic rather than specific patterns, theoretical models predict that recognition will occur between patterns that are characterized by similar or “matched” statistics1,2,3,4. Endowing synthetic biomimetic structures with statistical pattern matching capabilities may improve the specificity of sensors and resolution of separation processes5. We demonstrate that statistical pattern matching enhances the potency of polyvalent therapeutics. We functionalized liposomes with an inhibitory peptide at different densities and observed a transition in potency at an interpeptide separation that matches the distance between ligand-binding sites on the heptameric component of anthrax toxin. Pattern-matched polyvalent liposomes inhibited anthrax toxin in vitro at concentrations four orders of magnitude lower than the corresponding monovalent peptide, and neutralized this toxin in vivo. Statistical pattern matching also enhanced the potency of polyvalent inhibitors of cholera toxin. This facile strategy should be broadly applicable to the detection and neutralization of toxins and pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liposome-based inhibitor of anthrax toxin assembly.
Figure 2: Ligand density and membrane fluidity influence inhibition of anthrax toxin by peptide-functionalized liposomes in cell culture.
Figure 3: Inhibition of cholera toxin by galactose-functionalized liposomes.

Similar content being viewed by others

References

  1. Srebnik, S., Shakhnovich, E.I. & Chakraborty, A.K. Adsorption/freezing transition for random heteropolymers near disordered 2-D manifolds due to pattern matching. Phys. Rev. Lett. 77, 3157 (1996).

    Article  CAS  Google Scholar 

  2. Johnson, R.D., Wang, Z.-G. & Arnold, F.H. Surface site heterogeneity and lateral interactions in multipoint protein adsorption. J. Phys. Chem. 100, 5134–5139 (1996).

    Article  CAS  Google Scholar 

  3. Golumbfskie, A.J., Pande, V.S. & Chakraborty, A.K. Simulation of biomimetic recognition between polymers and surfaces. Proc. Natl. Acad. Sci. USA 96, 11707–11712 (1999).

    Article  CAS  Google Scholar 

  4. Jayaraman, A., Hall, C.K. & Genzer, J. Designing pattern-recognition surfaces for selective adsorption of copolymer sequences using lattice monte carlo simulation. Phys. Rev. Lett. 94, 078103 (2005).

    Article  Google Scholar 

  5. Mallik, S. et al. Towards materials for the specific recognition and separation of proteins. N. J. Chem. 18, 299–304 (1994).

    CAS  Google Scholar 

  6. Collier, R.J. & Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    Article  CAS  Google Scholar 

  7. Rainey, G.J. & Young, J.A. Antitoxins: Novel strategies to target agents of bioterrorism. Nat. Rev. Microbiol. 2, 721–726 (2004).

    Article  Google Scholar 

  8. Maynard, J.A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 (2002).

    Article  CAS  Google Scholar 

  9. Mourez, M. et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 19, 958–961 (2001).

    Article  CAS  Google Scholar 

  10. Abrami, L., Lindsay, M., Parton, R.G., Leppla, S.H. & van der Goot, F.G. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J. Cell Biol. 166, 645–651 (2004).

    Article  CAS  Google Scholar 

  11. Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  Google Scholar 

  12. Kingery-Wood, J.E., Williams, K.W., Sigal, G.B. & Whitesides, G.M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 114, 7303–7305 (1992).

    Article  CAS  Google Scholar 

  13. Spevak, W. et al. Polymerized liposomes containing C-glycosides of sialic acid: potent inhibitors of influenza virus in vitro infectivity. J. Am. Chem. Soc. 115, 1146–1147 (1993).

    Article  CAS  Google Scholar 

  14. Ladokhin, A.S., Jayasinghe, S. & White, S.H. How to measure and analyze tryptophan fluorescence in membranes properly and why bother? Anal. Biochem. 285, 235–245 (2000).

    Article  CAS  Google Scholar 

  15. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  16. Israelachvili, J . Intermolecular & Surface Forces (Academic Press, London, 1992).

  17. Tocanne, J.-F., Dupou-Cezanne, L. & Lopez, A. Lateral diffusion of lipids in model and natural membranes. Prog. Lipid Res. 33, 203–237 (1994).

    Article  CAS  Google Scholar 

  18. Chan, P.-Y. et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J. Cell Biol. 115, 245–255 (1991).

    Article  CAS  Google Scholar 

  19. Gujraty, K. et al. Functional characterization of peptide-based anthrax toxin inhibitors. Mol. Pharm. 2, 367–372 (2005).

    Article  CAS  Google Scholar 

  20. Fan, E., Merritt, E.A., Verlinde, C.L. & Hol, W.G. AB5 toxins: structure and inhibitor design. Curr. Opin. Struct. Biol. 10, 680–686 (2000).

    Article  CAS  Google Scholar 

  21. Holmgren, J., Lonnroth, I., Mansson, J.-E. & Svennerholm, L. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. USA 72, 2520–2524 (1975).

    Article  CAS  Google Scholar 

  22. Merritt, E.A. et al. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166–175 (1994).

    Article  CAS  Google Scholar 

  23. Svennerholm, A.M. & Holmgren, J. Identification of Eschericia coli heat-labile enterotoxin by means of a ganglioside immunosorbent assay (GM1-ELISA) procedure. Curr. Microbiol. 1, 19–23 (1978).

    Article  CAS  Google Scholar 

  24. Tristram-Nagle, S., Petrache, H.I. & Nagle, J.F. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917–925 (1998).

    Article  CAS  Google Scholar 

  25. Sun, W.-J., Tristram-Nagle, S., Suter, R.M. & Nagle, J.F. Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys. J. 71, 885–891 (1996).

    Article  CAS  Google Scholar 

  26. Soumpasis, D.M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 41, 95–97 (1983).

    Article  CAS  Google Scholar 

  27. Minke, W.E., Roach, C., Hol, W.G. & Verlinde, C.L. Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry 38, 5684–5692 (1999).

    Article  CAS  Google Scholar 

  28. Cunningham, K., Lacy, D.B., Mogridge, J. & Collier, R.J. Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen. Proc. Natl. Acad. Sci. USA 99, 7049–7053 (2002).

    Article  CAS  Google Scholar 

  29. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  30. Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant UO1 AI056546. J.M. holds the Canada Research Chair in Bacterial Pathogenesis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy Mogridge or Ravi S Kane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Preincubation of peptide-functionalized liposomes with [PA63]7 decreases the measured IC50. (PDF 64 kb)

Supplementary Fig. 2

Influence of ligand density and preincubation time on the inhibitory potency of DSPC-based galactose-functionalized liposomes (PDF 68 kb)

Supplementary Table 1

Estimated average inter-ligand separations for DSPC-based and DOPC-based liposomes as a function of ligand density (PDF 39 kb)

Supplementary Methods (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, P., Padala, C., Poon, V. et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nat Biotechnol 24, 582–586 (2006). https://doi.org/10.1038/nbt1204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing