Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production of calves from G1 fibroblasts


Since the landmark study of Wilmut et al. (Wilmut et al. in Nature 385:810, 1997) describing the birth of a cloned lamb derived from a somatic cell nucleus, there has been debate about the donor nucleus cell cycle stage required for somatic cell nuclear transfer (NT). Wilmut et al. (Wilmut et al. in Nature 385:810, 1997) suggested that induction of quiescence by serum starvation was critical in allowing donor somatic cells to support development of cloned embryos. In a subsequent report, Cibelli et al. (Cibelli in Science 280:1256, 1998) proposed that G0 was unnecessary and that calves could be produced from actively dividing fibroblasts. Neither study conclusively documented the importance of donor cell cycle stage for development to term. Other laboratories have had success with NT in several species (Wilmut et al. in Nature 385:810, 1997, Cibelli in Science 280:1256, 1998, Baguisi in Nat. Biotechnol. 17:456, 1999, Kubota in Proc. Natl. Acad. Sci. USA 973:990, 2000, Wakayama et al. in Nature 23:369, 1998, Wells et al. in Biol. Reprod. 60:996, 1999, Polejaeva in Nature 407:505, 2000) and most have used a serum starvation treatment. Here we evaluate methods for producing G0 and G1 cell populations and compare development following NT. High confluence was more effective than serum starvation for arresting cells in G0. Pure G1 cell populations could be obtained using a “shake-off” procedure. No differences in in vitro development were observed between cells derived from the high-confluence treatment and from the “shake-off” treatment. However, when embryos from each treatment were transferred to 50 recipients, five calves were obtained from embryos derived from “shake-off” cells, whereas no embryos from confluent cells survived beyond 180 days of gestation. These results indicate that donor cell cycle stage is important for NT, particularly during late fetal development and that actively dividing G1 cells support higher development rates than cells in G0.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2


  1. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    CAS  Article  Google Scholar 

  2. Cibelli, J.B. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258 (1998).

    CAS  Article  Google Scholar 

  3. Baguisi, A. et al. Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461 (1999).

    CAS  Article  Google Scholar 

  4. Kubota, C. et al. Six cloned calves produced from adult fibroblast cells after long term culture. Proc. Natl. Acad. Sci. USA 973, 990–995 (2000).

    Article  Google Scholar 

  5. Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R. & Yanagimachi, R. Full term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 23, 369–374 (1998).

    Article  Google Scholar 

  6. Wells, D.N., Misica, P.M. & Tervit, H.R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005 (1999).

    CAS  Article  Google Scholar 

  7. Polejaeva, I.A. et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 505–509 (2000).

    Article  Google Scholar 

  8. Gadbois, D.M., Crissman, H.A., Tobey, R.J. & Bradbury, E.M. Multiple kinase arrest points in the G1 phase of non-transformed mammalian cells are absent in transformed cells. Proc. Natl. Acad. Sci. USA 89, 8626–8630 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Freshney, I.R. (ed.) Culture of animal cells, Edn. 3. (Wiley-Liss Inc., New York; 1994).

  10. Kasinathan, P. et al. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol. Reprod. 64, 1487–1493 (2001).

    CAS  Article  Google Scholar 

  11. Liu, L., Ju. J. & Yang, X. Parthenogenetic development and protein patterns of newly matured bovine oocytes after chemical activation. Mol. Reprod. Dev. 49, 298–307 (1998).

    CAS  Article  Google Scholar 

  12. Presicce, G.A. & Yang, X. Parthenogenetic development of bovine oocytes matured in vitro for 24 hr and activated by ethanol and cycloheximide. Mol. Reprod. Dev. 38, 380–385 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors gratefully acknowledge Tara L. King, Karli J. Wright and Warren S. Lucero for their technical assistance and Audy R. Spell for embryo transfer. This work was supported in part by US Department of Agriculture grants no. 1997-03976 and 1999-03319 to D.J.J. and J.M.R.

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kasinathan, P., Knott, J., Wang, Z. et al. Production of calves from G1 fibroblasts. Nat Biotechnol 19, 1176–1178 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing