Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo near-infrared fluorescence imaging of osteoblastic activity

Abstract

In vertebrates, the development and integrity of the skeleton requires hydroxyapatite (HA) deposition by osteoblasts. HA deposition is also a marker of, or a participant in, processes as diverse as cancer and atherosclerosis. At present, sites of osteoblastic activity can only be imaged in vivo using γ-emitting radioisotopes. The scan times required are long and the resultant radioscintigraphic images suffer from relatively low resolution. We have synthesized a near-infrared (NIR) fluorescent bisphosphonate derivative that exhibits rapid and specific binding to HA in vitro and in vivo. We demonstrate NIR light–based detection of osteoblastic activity in the living animal and discuss how this technology can be used to study skeletal development, osteoblastic metastasis, coronary atherosclerosis and other human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Marks, S.C. & Popoff, S.N. Bone cell biology: the regulation of development, structure and function in the skeleton. Am. J. Anat. 183, 1–44 (1988).

    Article  PubMed  Google Scholar 

  • Jakoby, M.G. & Semenkovich, C.F. The role of osteoprogenitors in vascular calcification. Curr. Opin. Nephrol. Hypertens. 9, 11–15 (2000).

    Article  PubMed  Google Scholar 

  • Watson, K.E. Pathophysiology of coronary calcification. J. Cardiovasc. Risk 7, 93–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Jung, A., Bisaz, S. & Fleisch, H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif. Tissue Res. 11, 269–280 (1973).

    Article  CAS  PubMed  Google Scholar 

  • Fleisch, H. Bisphosphonates—history and experimental basis. Bone (Suppl. 1) 8, S23–S28 (1987).

    CAS  PubMed  Google Scholar 

  • Altkorn, D. & Vokes, T. Treatment of postmenopausal osteoporosis. JAMA 285, 1415–1418 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Eastell, R. Treatment of postmenopausal osteoporosis. N. Engl. J. Med. 338, 736–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mundy, G.R. & Yoneda, T. Bisphosphonates as anticancer drugs. N. Engl. J. Med. 339, 398–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Klenner, T., Wingen, F., Keppler, B.K., Krempien, B. & Schmahl, D. Anticancer-agent-linked phosphonates with antiosteolytic and antineoplastic properties: a promising perspective in the treatment of bone-related malignancies? J. Cancer Res. Clin. Oncol. 116, 341–350 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, J. et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. I: synthesis and in vivo characterization of osteotropic carboxyfluorescein. J. Drug Target. 3, 273–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, J. et al. Physicochemical characterization of bisphosphonic carboxyfluorescein for osteotropic drug delivery. J. Pharm. Pharmacol. 48, 798–800 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, J. et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. III: Pharmacokinetics and targeting characteristics of osteotropic carboxyfluorescein. J. Drug Target. 4, 117–123 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, J. et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol. Biol. Pharm. Bull. 20, 1183–1187 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, J. et al. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. IV. Effects of osteotropic estradiol on bone mineral density and uterine weight in ovariectomized rats. J. Drug Target. 5, 129–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi, H. et al. Bone-specific delivery and sustained release of diclofenac, a non-steroidal anti-inflammatory drug, via bisphosphonic prodrug based on the Osteotropic Drug Delivery System (ODDS). J. Control. Release 70, 183–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Bachman, C.H. & Ellis, E.H. Fluorescence of bone. Nature 206, 1328–1331 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Prentice, A.I. Autofluorescence of bone tissues. J. Clin. Pathol. 20, 717–719 (1967).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chance, B. Near-infrared images using continuous, phase-modulated and pulsed light with quantitation of blood and blood oxygenation. Ann. N.Y. Acad. Sci. 838, 29–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.H., Duggan, D.E., Chen, I.W. & Ellsworth, R.L. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Metab. Dispos. 19, 926–932 (1991).

    CAS  PubMed  Google Scholar 

  • Mahmood, U., Tung, C.H., Bogdanov, A. & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Miwa, N. et al. In Patent Cooperation Treaty WO 00/16810 (2000).

  • Reilly, D.T. & Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393–405 (1975).

    Article  CAS  PubMed  Google Scholar 

  • McKern, N.M. Comparison of skeletal growth in normal and “little” mice. Growth 46, 53–59 (1982).

    CAS  PubMed  Google Scholar 

  • Cleynhens, B. et al. 99mTc-bone agents with rapid renal excretion. In Technetium, rhenium and other metals in chemistry and nuclear medicine. (eds Nicolini, M. & Mazzi, U.) 611–614 (Servizi Grafici Editoriali, Padova, Italy; 1999).

  • Quaresima, V., Matcher, S.J. & Ferrari, M. Identification and quantification of intrinsic optical contrast for near-infrared mammography. Photochem. Photobiol. 67, 4–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Farkas, D.L. et al. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph. 22, 89–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabatakos, G. et al. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat. Med. 6, 985–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Olsen, B.R., Reginato, A.M. & Wang, W. Bone development. Annu. Rev. Cell. Dev. Biol. 16, 191–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Gunther, T. & Schinke, T. Mouse genetics have uncovered new paradigms in bone biology. Trends Endocrinol. Metab. 11, 189–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Drake, W.M., Kendler, D.L. & Brown, J.P. Consensus statement on the modern therapy of Paget's disease of bone from a Western Osteoporosis Alliance symposium. Clin. Ther. 23, 620–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Karrer, S. et al. Photochemotherapy with indocyanine green in cutaneous metastases of rectal carcinoma (in German). Dtsch. Med. Wochenschr. 122, 1111–1114 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Abels, C. et al. Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch. Dermatol. Res. 292, 404–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rogers, M.J. et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88, 2961–2978 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Martin, M.B. et al. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii and Plasmodium falciparum: a potential route to chemotherapy. J. Med. Chem. 44, 909–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Lim, D.J. & Saunders, W.H. Otosclerotic stapes: morphological and microchemical correlates. An electron microscopic and x-ray analytical investigation. Ann. Otol. Rhinol. Laryngol. 86, 525–540 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Ikehira, H., Furuichi, Y., Kinjo, M., Yamamoto, Y. & Aoki, T. Multiple extra-bone accumulations of technetium-99m-HMDP. J. Nucl. Med. Technol. 27, 41–42 (1999).

    CAS  PubMed  Google Scholar 

  • Dupouy, P., Geschwind, H.J., Pelle, G., Gallot, D. & Dubois-Rande, J.L. Assessment of coronary vasomotion by intracoronary ultrasound. Am. Heart J. 126, 76–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Rockson, S.G. et al. Photoangioplasty for human peripheral atherosclerosis: results of a phase I trial of photodynamic therapy with motexafin lutetium (Antrin). Circulation 102, 2322–2324 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel S. Kemp and Stephan D. Voss for helpful discussions and Alec DeGrand, Ananda Lugade, Christopher Mantzios, Kerry Petersen, Daniel Draney, Michelle Pastore, Alice Carmel, David Lee-Parritz, Angeline Warner, Stephen Moore, J. Anthony Parker, Rachel Katz-Brull, Barry Alpert, Victor Laronga, Michael Paszak, Patrick Verdier, Paul Nothnagle, Paul Millman, Kenneth Wilson, Victor Yen, Maxx Abraham and Fernando Delaville for technical assistance. We thank Rebekah Taube for proofreading and Grisel Rivera for administrative assistance. A.Z. is a Radiology Training Grant Fellow of the National Cancer Institute (NCI). A.M. and A.G.J. acknowledge support from US Public Health Service (US PHS) grant R01CA/34970. J.V.F. is supported by the Howard Hughes Medical Institute, Doris Duke Charitable Foundation (nonanimal experiments), Paul D. and Lovie S. Kemp Career Development Fund for Prostate Cancer, the Hershey Family Foundation, the Rita Leabman Memorial Fund and a grant from the NCI (R21CA88245).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaheer, A., Lenkinski, R., Mahmood, A. et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19, 1148–1154 (2001). https://doi.org/10.1038/nbt1201-1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing