Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells

Abstract

Magnetic resonance (MR) tracking of magnetically labeled stem and progenitor cells is an emerging technology, leading to an urgent need for magnetic probes that can make cells highly magnetic during their normal expansion in culture. We have developed magnetodendrimers as a versatile class of magnetic tags that can efficiently label mammalian cells, including human neural stem cells (NSCs) and mesenchymal stem cells (MSCs), through a nonspecific membrane adsorption process with subsequent intracellular (non-nuclear) localization in endosomes. The superparamagnetic iron oxide nanocomposites have been optimized to exhibit superior magnetic properties and to induce sufficient MR cell contrast at incubated doses as low as 1 μg iron/ml culture medium. When containing between 9 and 14 pg iron/cell, labeled cells exhibit an ex vivo nuclear magnetic resonance (NMR) relaxation rate (1/T2) as high as 24–39 s−1/mM iron. Labeled cells are unaffected in their viability and proliferating capacity and labeled human NSCs differentiate normally into neurons. Furthermore, we show here that NSC-derived (and LacZ-transfected), magnetically labeled oligodendroglial progenitors can be readily detected in vivo at least as long as six weeks after transplantation, with an excellent correlation between the obtained MR contrast and staining for β-galactosidase expression. The availability of magnetodendrimers opens up the possibility of MR tracking of a wide variety of (stem) cell transplants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Shamblott, M.J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  Google Scholar 

  • Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  • McDonald, J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  Google Scholar 

  • Brüstle, O. et al. Embryonic stem cell–derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  Google Scholar 

  • McKay, R. Stem cells—hype and hope. Nature 406, 361–364 (2000).

    Article  Google Scholar 

  • Bulte, J.W.M. et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking of cell migration and myelination. Proc. Natl. Acad. Sci. USA 96, 15256–15261 (1999).

    Article  CAS  Google Scholar 

  • Shen, T., Weissleder, R., Papisov, M., Bogdanov, A. & Brady, T.J. Monocrystalline iron-oxide nanocompounds (MION): physicochemical properties. Magn. Reson. Med. 29, 599–604 (1993).

    Article  CAS  Google Scholar 

  • Josephson, L., Tung, C.H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconj. Chem. 10, 186–191 (1999).

    Article  CAS  Google Scholar 

  • Lewin, M. et al. Tat peptide–derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  • Bulte, J.W.M. & Brooks, R.A. Magnetic nanoparticles as contrast agents for MR imaging. In Scientific and clinical applications of magnetic carriers. (eds Häfeli, U., Schütt, W., Teller, J. & Zborowski, M.) 527–543 (Plenum Press, New York; 1997).

    Chapter  Google Scholar 

  • Bulte, J.W.M., Brooks, R.A., Moskowitz, B.M., Bryant, L.H. & Frank, J.A. Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn. Reson. Med. 42, 379–384 (1999).

    Article  CAS  Google Scholar 

  • Bulte, J.W.M. & Bryant, L.H. Molecular and cellular magnetic resonance contrast agents. In Focus on biotechnology, Vol. 7. (eds de Cuyper, M. & Bulte, J.W.M.) 197–211 (Kluwer Academic Publishers, Norwell, MA; 2001).

    Google Scholar 

  • Wiener, E.C. et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31, 1–8 (1994).

    Article  CAS  Google Scholar 

  • Bulte, J.W.M. et al. Dy-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents: preparation and relaxometry. Invest. Radiol. 33, 841–845 (1998).

    Article  CAS  Google Scholar 

  • Bryant, L.H. et al. Synthesis and relaxometry of high generation (G = 5, 7, 9 and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J. Magn. Reson. Imaging 9, 348–352 (1999).

    Article  Google Scholar 

  • Adam, G. et al. Gd-DTPA-cascade-polymer: potential blood pool contrast agent for MR imaging. J. Magn. Reson. Imaging 4, 462–466 (1994).

    Article  CAS  Google Scholar 

  • Schwickert, H.C. et al. Angiographic properties of Gd-DTPA-24 cascade-polymer—a new macromolecular MR contrast agent. Eur. J. Radiol. 20, 144–150 (1995).

    Article  CAS  Google Scholar 

  • Bourne, M.W. et al. Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time-of-flight magnetic resonance angiography of the body. J. Magn. Reson. Imaging 6, 305–310 (1996).

    Article  Google Scholar 

  • Krause, W., Hackmann-Schlichter, N., Maier, F.K. & Muller, R. Dendrimers in diagnostics. Dendrimers II 210, 261–308 (2000).

    Article  CAS  Google Scholar 

  • Zhao, M.Q., Sun, L. & Crooks, R.M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877–4878 (1998).

    Article  CAS  Google Scholar 

  • Balogh, L. & Tomalia, D.A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).

    Article  CAS  Google Scholar 

  • Zhao, M.Q. & Crooks, R.M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem. Int. Edn. Engl. 38, 364–366 (1999).

    Article  CAS  Google Scholar 

  • Kukowska-Latallo, J.F. et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 93, 4897–4902 (1996).

    Article  CAS  Google Scholar 

  • Tang, M.X., Redemann, C.T. & Szoka, F.C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconj. Chem. 7, 703–714 (1996).

    Article  CAS  Google Scholar 

  • Plank, C., Mechtler, K., Szoka, F.C. & Wagner, E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Human Gene Ther. 7, 1437–1446 (1996).

    Article  CAS  Google Scholar 

  • DeLong, R. et al. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86, 762–764 (1997).

    Article  CAS  Google Scholar 

  • Strable, E., Bulte, J.W.M., Moskowitz, B., Vivekanandan, K. & Douglas, T. Synthesis and characterization of soluble iron oxide–dendrimer composites. Chem. Mater. 13, 2201–2209 (2001).

    Article  CAS  Google Scholar 

  • Bhorade, R., Weissleder, R., Nakakoshi, T., Moore, A. & Tung, C-H. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-Tat derived membrane translocation peptide. Bioconj. Chem. 11, 301–305 (2000).

    Article  CAS  Google Scholar 

  • Dodd, C.H. et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods 256, 89–105 (2001).

    Article  CAS  Google Scholar 

  • Zhang, Z-Y. & Smith, B.D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconj. Chem. 11, 805–814 (2000).

    Article  CAS  Google Scholar 

  • Brazelton, T.R., Rossi, F.M.V., Keshet, G.I. & Blau, H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  CAS  Google Scholar 

  • Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. & McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  CAS  Google Scholar 

  • O'Connor, L.T. et al. Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J. Neurosci. 19, 3404–3413 (1999).

    CAS  Google Scholar 

  • Bulte, J.W.M., Go, K.G., Zuiderveen, F., The, T.H. & de Leij, L. Intracerebral and subcutaneous xenografts of human SCLC in the nude rat: comparison of monoclonal antibody localization and tumor infiltrating lymphocytes. J. Neuro-Oncol. 16, 11–18 (1993).

    Article  CAS  Google Scholar 

  • Louis, J.C., Magal, E., Muir, D., Manthorpe, M. & Varon, S. CG-4, a new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes. J. Neurosci. Res. 31, 193–204 (1992).

    Article  CAS  Google Scholar 

  • Yaffe, D. & Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725–727 (1977).

    Article  CAS  Google Scholar 

  • Zhang, S.-C., Lundberg, C., Lipsitz, D., O'Connor, L.T. & Duncan, I.D. Generation of oligodendroglial progenitors from neural stem cells. J. Neurocytol. 27, 475–489 (1998).

    Article  CAS  Google Scholar 

  • Bulte, J.W.M., Miller, G.F, Vymazal, J., Brooks, R.A. & Frank, J.A. Hepatic hemosiderosis in non-human primates: quantification of liver iron using different field strengths. Magn. Reson. Med. 37, 530–536 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to John Colen and Brett Worly for their help with cell labeling and imaging; Jonathan Hill and Glenn Walter for providing the 3T3 and C2C12 cells, respectively; Neuralstem Biopharmaceuticals and Karl Johe for providing the human NSCs and Jacquie Shukaliah for helpful discussions. This work was partially supported by a grant from the National Science Foundation (NSF) to T.D. (CHE-9801685) and the Oscar Rennebohm Foundation to I.D.D. The Institute for Rock Magnetism is supported by grants from the Keck Foundation and NSF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulte, J., Douglas, T., Witwer, B. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19, 1141–1147 (2001). https://doi.org/10.1038/nbt1201-1141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing