Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

DNA cloning by homologous recombination in Escherichia coli

Abstract

The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination1,2, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcloning by ET recombination.
Figure 2: Cloning by ET recombination.
Figure 3: Additional aspects involved in ET subcloning.

Similar content being viewed by others

References

  1. Zhang, Y., Buchholz, F., Muyrers, J.P.P. & Stewart, A.F. A new logic for DNA engineering using recombination in Escherichia coli . Nat. Genet. 20, 123– 128 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Muyrers, J.P.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination . Nucleic Acids Res. 27, 1555– 1557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Narayanan, K., Williamson, R., Zhang, Y., Stewart, A.F. & Ioannou, P.A. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system . Gene Ther. 6, 442–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, F. et al. BAC trimming: minimizing clone overlaps. Genomics 64 , 111–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Angrand, P.-O., Daigle, N., van der Hoeven, F., Scholer, H.R. & Stewart A.F. Simplified generation of targeting constructs using ET recombination. Nucleic Acids Res. 27, e16 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muyrers, J.P.P. et al. Point mutation of bacterial artificial chromosomes by ET recombination . EMBO Rep. 1, 239–243 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nefedov, M., Williamson, R. & Ioannou, P.A. Insertion of disease-causing mutations in BACs by homologous recombination in Escherichia coli. Nucleic Acids Res. 28, E79 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murphy, K.C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy, K.C., Campellone, K.G. & Poteete, A.R. PCR-mediated gene replacement in Escherichia coli . Gene 246, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640– 6645 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Muyrers, J.P.P., Zhang, Y., Buchholz, F. & Stewart, A.F. RecE/RecT and Redα/Redβ initiate double stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Baskaran, K. et al. Cloning and developmental expression of the murine homolog of the acute leukemia proto-oncogene AF4. Oncogene 15, 1967–1978 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bhargava, J. et al. Direct cloning of genomic DNA by recombinogenic targeting method using a yeast-bacterial shuttle vector, pClasper. Genomics 62, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Bradshaw, M.S., Bollekens, J.A. & Ruddle, F.H. A new vector for recombination-based cloning of large DNA fragments from yeast artificial chromosomes. Nucleic Acids Res. 23, 4850–4856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhargava, J. et al. Direct cloning of genomic DNA by recombinogenic targeting method using a yeast-bacterial shuttle vector, pClasper. Genomics 62, 285–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Shashikant, C.S., Carr, J.L., Bhargava, J., Bentley, K.L. & Ruddle, F.H. Recombinogenic targeting: a new approach to genomic analysis—a review. Gene 223, 9–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Larionov, V. Direct isolation of specific chromosomal regions and entire genes by TAR cloning . Genet. Eng. 21, 37–55 (1999).

    Article  CAS  Google Scholar 

  19. Clark, A.J. Progress toward a metabolic interpretation of genetic recombination of Escherichia coli and bacteriophage lambda. Genetics 78, 259–271 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Metcalf, W.W., Jiang, W. & Wanner, B.L. Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6K gamma origin plasmids at different copy numbers. Gene 138 , 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Muyrers, J.P.P., Zhang, Y. & Stewart A.F. ET-cloning; think recombination first . In Genetic engineering, Vol. 22 (ed. Setlow, J.K.) 77–98 (Kluwer Academic/Plenum Publishers, New York; 2000).

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors like to thank Michelle Meredyth and Inhua Muyrers-Chen for critical readings of the manuscript. This work was supported in part by grants from the Volkswagen Foundation, Program on Conditional Mutagenesis, and the NIH, National Institute for Aging. Y.Z. was a recipient of an EMBO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Francis Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Muyrers, J., Testa, G. et al. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18, 1314–1317 (2000). https://doi.org/10.1038/82449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing