Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA expression analysis using a 30 base pair resolution Escherichia coli genome array

Abstract

We have developed a high-resolution “genome array” for the study of gene expression and regulation in Escherichia coli. This array contains on average one 25-mer oligonucleotide probe per 30 base pairs over the entire genome, with one every 6 bases for the intergenic regions and every 60 bases for the 4,290 open reading frames (ORFs). Twofold concentration differences can be detected at levels as low as 0.2 messenger RNA (mRNA) copies per cell, and differences can be seen over a dynamic range of three orders of magnitude. In rich medium we detected transcripts for 97% and 87% of the ORFs in stationary and log phases, respectively. We found that 1,529 transcripts were differentially expressed under these conditions. As expected, genes involved in translation were expressed at higher levels in log phase, whereas many genes known to be involved in the starvation response were expressed at higher levels in stationary phase. Many previously unrecognized growth phase-regulated genes were identified, such as a putative receptor (b0836) and a 30S ribosomal protein subunit (S22), both of which are highly upregulated in stationary phase. Transcription of between 3,000 and 4,000 predicted ORFs was observed from the antisense strand, indicating that most of the genome is transcribed at a detectable level. Examples are also presented for high-resolution array analysis of transcript start and stop sites and RNA secondary structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: False-color images of scanned E. coli genome array hybridized with a sample derived from a stationary-phase culture growing in LB.
Figure 2: Comparison of 2max (blue circle), median (red square), and average difference (green triangle) abundance metrics using Bacillus subtilis control RNAs.
Figure 3: The E. coli array can detect strand-specific transcription and can be used to identify (A) small untranslated RNAs, such as csrB, and (B) detection of a previously unidentified antisense RNA in the Rac prophage.
Figure 4: Determination of transcription starts of (A) lpp and (B) rpsO.

Similar content being viewed by others

References

  1. de Saizieu, A. et al. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nat. Biotechnol. 16, 45– 48 (1998).

    Article  CAS  Google Scholar 

  2. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675– 1680 (1996).

    Article  CAS  Google Scholar 

  3. Wodicka, L. et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

  4. Lee, C.K. et al. Gene expression profile of aging and its retardation by caloric restriction . Science 285, 1390–1393 (1999).

    Article  CAS  Google Scholar 

  5. Zhu, H. et al. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 14470–14475 (1998).

    Article  CAS  Google Scholar 

  6. Wen, X. et al. Large-scale temporal gene expression mapping of central nervous system development . Proc. Natl. Acad. Sci. USA 95, 334– 339 (1998).

    Article  CAS  Google Scholar 

  7. Roth, F.P. et al. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  8. Tavazoie, S. et al. Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  9. Eisen, M.B. et al. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863– 14868 (1998).

    Article  CAS  Google Scholar 

  10. Tamayo, P. et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912 ( 1999).

    Article  CAS  Google Scholar 

  11. Richmond, C.S. et al. Genome-wide expression profiling in Escherichia coli K-12 . Nucleic Acids Res. 27, 3821– 3835 (1999).

    Article  CAS  Google Scholar 

  12. Tao, H. et al. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425–6440 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chuang, S.E., Daniels, D.L. & Blattner, F.R. Global regulation of gene expression in Escherichia coli. J. Bacteriol. 175, 2026– 2036 (1993).

    Article  CAS  Google Scholar 

  14. Pease, A.C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis . Proc. Natl. Acad. Sci. USA 91, 5022– 5026 (1994).

    Article  CAS  Google Scholar 

  15. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 ( 1997).

    Article  CAS  Google Scholar 

  16. Hengge-Aronis, R. Regulation of gene expression during entry into stationary phase. In Escherichia coli and Salmonella: cellular and molecular biology. (eds Neidhardt, F.C. et al.) 1497–1512 (ASM Press, Washington D.C.; 1996).

    Google Scholar 

  17. Yuzawa, H. et al. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 21, 5449–5455 (1993).

    Article  CAS  Google Scholar 

  18. Lange, R. & Hengge-Aronis, R. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 8, 1600– 1612 (1994).

    Article  CAS  Google Scholar 

  19. E. coli genome project. http://www.genome.wisc.edu

  20. Link, A.J., Robison, K. & Church, G.M. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18, 1259–1313 (1997).

    Article  CAS  Google Scholar 

  21. Aach, J., Rindone, W. & Church, G.M. Systematic management and analysis of yeast gene expression data. Genome Res. 10, 431– 445 (2000).

    Article  CAS  Google Scholar 

  22. ExpressDB. http://arep.med.harvard.edu/cgi-bin/ExpressDBecoli/EXDStart

  23. Liu, M.Y. et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272, 17502–17510 (1997).

    Article  CAS  Google Scholar 

  24. Southern, E.M., Milner, N. & Mir, K.U. Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Ciba Found. Symp. 209 , 38–44 (1997).

    CAS  PubMed  Google Scholar 

  25. Chen, L.H. et al. Structure and function of a bacterial mRNA stabilizer: analysis of the 5′ untranslated region of ompA mRNA. J. Bacteriol. 173, 4578–4586 (1991).

    Article  CAS  Google Scholar 

  26. SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 ( 1998).

    Article  CAS  Google Scholar 

  27. mfold. http://mfold2.wustl.edu/~mfold/dna/form1.cgi

  28. Mir, K.U. & Southern, E.M. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat. Biotechnol. 17, 788–792 (1999).

    Article  CAS  Google Scholar 

  29. Taljanidisz, J., Karnik, P. & Sarkar, N. Messenger ribonucleic acid for the lipoprotein of the Escherichia coli outer membrane is polyadenylated. J. Mol. Biol. 193, 507–515 (1987).

    Article  CAS  Google Scholar 

  30. Cao, G.J. & N. Sarkar . Poly(A) RNA in Escherichia coli: nucleotide sequence at the junction of the lpp transcript and the polyadenylate moiety. Proc. Natl. Acad. Sci. USA 89, 7546–7550 (1992).

    Article  CAS  Google Scholar 

  31. Portier, C. & Regnier, P. Expression of the rpsO and pnp genes: structural analysis of a DNA fragment carrying their control regions. Nucleic Acids Res. 12, 6091–6102 (1984).

    Article  CAS  Google Scholar 

  32. Portier, C. et al. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO J. 6, 2165– 2170 (1987).

    Article  CAS  Google Scholar 

  33. Regnier, P. & Hajnsdorf, E. Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. J. Mol. Biol. 217, 283–292 (1991).

    Article  CAS  Google Scholar 

  34. Pennisi, E. Are sequencers ready to 'annotate' the human genome? Science 287, 2183 (2000).

    Article  CAS  Google Scholar 

  35. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer . Nat. Genet. 14, 457–460 (1996).

    Article  CAS  Google Scholar 

  36. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  37. Tavazoie, S. & Church, G.M. Quantitative whole-genome analysis of DNA–protein interactions by in vivo methylase protection in E. coli. Nat. Biotechnol. 16, 566–571 (1998).

    Article  CAS  Google Scholar 

  38. Dedon, P.C. et al. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein–DNA interactions. Anal. Biochem. 197, 83–90 (1991).

    Article  CAS  Google Scholar 

  39. Orlando, V. & Paro, R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin . Cell 75, 1187–1198 (1993).

    Article  CAS  Google Scholar 

  40. Bulyk, M.L. et al. Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat. Biotechnol. 17, 573– 577 (1999).

    Article  CAS  Google Scholar 

  41. Winzeler, E.A. et al. Whole genome genetic-typing in yeast using high-density oligonucleotide arrays. Parasitology 118, S73– S80 (1999).

    Article  CAS  Google Scholar 

  42. Gingeras, T.R. et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res. 8, 435–448 ( 1998).

    Article  CAS  Google Scholar 

  43. Neidhardt, F.C., Ingraham, J.L. & Schaechter, M. Physiology of the bacterial cell: a molecular approach. (Sinauer Associates, Sunderland, MA; 1990 ).

    Google Scholar 

Download references

Acknowledgements

We thank J. Edwards for improvements to the labeling protocol, D. Janse for sharing unpublished data, A. Derti and A. Petti for bioinformatics contributions, F. Lam for help with the fermentor, M. Mittmann for array design, P. Juels for impeccable computer tech support, W. Rindone and J. Aach for expression database support, B. Cohen, R. Mitra, M. Bulyk, P. Estep, M. Steffen, and the rest of the Church lab for the many helpful discussions and encouragement that made this work possible. We also thank the reviewers for significant improvements to the manuscript. This work was supported by grants from Aventis Pharma, Lipper Foundation, DOE, and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Church.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selinger, D., Cheung, K., Mei, R. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 18, 1262–1268 (2000). https://doi.org/10.1038/82367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing