Research Article | Published:

Targeting by affinity–matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform



The oncofetal fibronectin (B-FN) isoform is present in vessels of neoplastic tissues during angiogenesis but not in mature vessels. B-FN could therefore provide a target for diagnostic imaging and therapy of cancer. Phage display libraries have been used to isolate human antibody fragments with pan-species recognition of this isoform. We describe the use of these fragments in nude mice to target an aggressive tumor (grafted F9 murine teratocarcinoma). Imaging in real time was done by infrared photodetection of a chemically coupled fluorophore. The targeting was improved by use of affinity-matured fragments with low kinetic dissociation rates (koff=1.5×10−4 s−1) and also by engineering dimeric fragments via a C-terminal amphipathic helix.


  1. 1

    Berkower, I. 1996. The promise and pitfalls of monoclonal antibody therapeutics. Curr. Opin. Biotechnol. 7: 622–628.

  2. 2

    Press, O.W., Eary, J.F., Appelbaum, F.R., Martin, P.J., Nelp, W.B., Glen, S., et al. 1995. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autolo-gous stem cell transplantation for relapsed B cell lymphomas. Lancet 346: 336–340.

  3. 3

    Riva, P., Arista, A., Tison, V., Sturiale, C., Franceschi, G., Spinelli, A. et al. 1994. Intralesional radio-immunotherapy of malignant gliomas. Cancer 73: 1076–1082.

  4. 4

    Schneider-Gadicke, E. and Riethmüller, G. 1995. Prevention of manifest metastasis with monoclonal antibodies: a novel approach to immunotherapy of solid tumors. Eur. J. Cancer 31: 1326–1330.

  5. 5

    Maloney, D.G., Liles, T.M., Czerwinski, D.K., Waldichuk, C., Rosenberg, J., Grillo-Lopez, A., and Levy, R. 1994. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84: 2457–2466.

  6. 6

    Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

  7. 7

    Carter, P., Kelley, R.F., Rodrigues, M.L., Snedecor, B., Covarrubias, M., Velligan, M.D., et al. 1992. High level Escherichia coliexpression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.

  8. 8

    Pack, P., Kujau, M., Schroeckh, U., Knüpfer, R., Wenderoth, R., Riesenberg, D., and Plückthun, A. 1993. Improved bivalent miniantibodies with identical avidity as whole antibodies produced by high cell density fermentation of Escherichia coli. Bio/Technology 11: 1271–1277.

  9. 9

    Begent, R.H.J., Verhaar, M.J., Chester, K.A., Green, A.J., Napier, M.P., Hope-Stone, L.D., et al. 1996. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nature Medicine 2: 979–984.

  10. 10

    Casey, J.L., Keep, P.A., Chester, K.A., Robson, L., Hawkins, R.E., and Begent, R.H. 1995. Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Methods 179: 105–116.

  11. 11

    Yokota, T., Milenic, D.E., Whitlow, M., and Schlom, J. 1992. Rapid tumor penetration of single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52: 3402–3408.

  12. 12

    Pasqualini, R., Koivunen, E., and Ruoslahti, E. 1997. Alfa-v integrins as receptors for tumor targetin by circulating ligands. Nature Biotechnology 15: 542–546.

  13. 13

    Kim, K.J., Li, B., Winer, J., Armanii, M., Gillett, N., Phillips, H.S., and Ferrara, N. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362: 841–844.

  14. 14

    Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumathoid and other disease. Nature Med. 1: 27–31.

  15. 15

    O'Reilly, M.S., Holmgren, L., Chen, C., and Folkman, J. 1996. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2: 689–692.

  16. 16

    Huang, H., Molema, G., King, S., Watkins, L., Edgington, T.S., and Thorpe, P.E. 1997. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor neo-vasculature. Science 275: 547–550.

  17. 17

    Van den Hoff, A. 1988. Stromal involvement in malignant growth. Adv. Cancer Res. 50: 159–196.

  18. 18

    Risau, W. and Lemmon, V. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125: 441–450.

  19. 19

    Camemolla, B., Balza, E., Siri, A., Zardi, L., Nicotra, M.R., Bigotti, A., and Natali, P.G. 1989. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J. Cell Biol. 108: 1139–1148.

  20. 20

    Castellani, P., Viale, G., Dorcaratto, A., Nicolo', G., Kazmarek, J., Querze, G., and Zardi, L. 1994. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59: 612–618.

  21. 21

    Camemolla, B., Neri, D., Castellani, P., Leprini, A., Neri, G., Pini, A., et al. 1996. Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer 68: 397–405.

  22. 22

    Huston, J.S., Levinson, D., Mudgett, H.M., Tai, M.S., Novotny, J., Margolies, M.N., et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879–5883.

  23. 23

    Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.M., et al. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

  24. 24

    Nissim, A., Hoogenboom, H.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., and Winter, G. 1994. Antibody reagents from a ‘single-pot’ phage display library as immunochemical reagents. EMBO J. 13: 692–698.

  25. 25

    Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M., and Winter, G. 1992. By-passing immunization: building high-affinity human antibodies by chain shuffling. Bio/Technology 10: 779–783

  26. 26

    Low, N., Holliger, P., and Winter, G. 1996. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260: 359–368.

  27. 27

    Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

  28. 28

    Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

  29. 29

    Folli, S., Westermann, P., Braichotte, D., Pelegrin, A., Weignieres, G., van der Bergh, H., and Mach, J.P. 1994. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54: 2643–2649.

  30. 30

    Neri, D., Prospero, T., Petrul, H., Winter, W., Browne, M., and Vanderpant, L. 1996. A multi-purpose high-sensitivity luminescence analyser (LUANA): use in gel electrophoresis. Bio/Techniques 20: 708–713.

  31. 31

    Friedlander, M., Theesfeld, C.L., Sugita, M., Fruttiger, M., Thomas, M.A., Chang, S., and Cheresh, D.A. 1996. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93: 9764–9769.

  32. 32

    Adams, G.P., McCartney, J.E., Tai, M.S., Oppermann, H., Huston, J.S., Stafford, W.F. III, et al. 1993. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB2 sincle-chain Fv. Cancer Res. 53: 4026–4034.

  33. 33

    King, D.J., Turner, A., Farnsworth, A.P.H., Adair, J.R., Owens, R.J., Pedley, R.B., et al. 1994. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54: 6176–6185.

  34. 34

    Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L.E., Wong, J.Y., et al. 1996. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56: 3055–3061.

  35. 35

    Peters, J.H., Chen, G., and Hynes, R.O. 1996. Fibronectin isoform distribution in the mouse. II. Differential distribution of the alternatively spliced EIIIB, EIIIA, and V segments in the adult mouse. Cell Adhes. Commun. 4: 127–148.

  36. 36

    Bennett, V.D., Pallante, K.M., and Adams, S.L. 1991. The splicing pattern of fibronectin mRNA changes during chondrogenesis resulting in an unusual form of the mRNA in cartilage. J. Biol. Chem. 266: 5918–5924.

  37. 37

    George, A.J., Jamar, F., Tai, M.S., Heelan, B.T., Adams, G.P., McCartney, J.E., et al. 1995. Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site: technetiurn-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide. Proc. Natl. Acad. Sci. USA 92: 8358–8362.

  38. 38

    Liberatore, M., Neri, D., Neri, G., Pini, A., lurilli, A.P., Ponzo, F., et al. 1995. Efficient one-step direct labeling of recombinant antibodies with 99mTc. Eur. J. Nuclear Med. 22: 1326–1329.

  39. 39

    Neri, D. and Zardi, L. 1997. New approaches to tumor targeting, in Therapy of malignancies with radio-conjugate monoclonal antibodies: present possibilities and future perspectives. Riva P. (ed.) Harwood Academic Publishers, Amsterdam, The Netherlands. In press.

  40. 40

    Padlan, E.A. 1994. Anatomy of the antibody molecule. Mol. Immunol. 31: 169–217.

  41. 41

    Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

  42. 42

    Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., and Winter, G. 1991. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19: 4133–4137.

  43. 43

    Gibson, T.J. 1984. Studies on the Epstein-Barr virus genome. Ph.D. Thesis, University of Cambridge, Cambridge, UK.

  44. 44

    Jönsson, U., Fägerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., et al. 1991. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11: 620–627.

  45. 45

    Neri, D., Petrul, H., Light, Y., Marais, R., Britton, K.E., Winter, G., and Creighton, A.M. 1996. Radioactive labeling of recombinant antibody fragments by phos-phorylation using human casein kinase II and [γ-32P]-ATP. Nature Biotechnology 14: 385–390.

  46. 46

    McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552–554.

Download references

Author information

Correspondence to Dario Neri.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading