Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeting by affinity–matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform

Abstract

The oncofetal fibronectin (B-FN) isoform is present in vessels of neoplastic tissues during angiogenesis but not in mature vessels. B-FN could therefore provide a target for diagnostic imaging and therapy of cancer. Phage display libraries have been used to isolate human antibody fragments with pan-species recognition of this isoform. We describe the use of these fragments in nude mice to target an aggressive tumor (grafted F9 murine teratocarcinoma). Imaging in real time was done by infrared photodetection of a chemically coupled fluorophore. The targeting was improved by use of affinity-matured fragments with low kinetic dissociation rates (koff=1.5×10−4 s−1) and also by engineering dimeric fragments via a C-terminal amphipathic helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berkower, I. 1996. The promise and pitfalls of monoclonal antibody therapeutics. Curr. Opin. Biotechnol. 7: 622–628.

    Article  CAS  PubMed  Google Scholar 

  2. Press, O.W., Eary, J.F., Appelbaum, F.R., Martin, P.J., Nelp, W.B., Glen, S., et al. 1995. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autolo-gous stem cell transplantation for relapsed B cell lymphomas. Lancet 346: 336–340.

    Article  CAS  PubMed  Google Scholar 

  3. Riva, P., Arista, A., Tison, V., Sturiale, C., Franceschi, G., Spinelli, A. et al. 1994. Intralesional radio-immunotherapy of malignant gliomas. Cancer 73: 1076–1082.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider-Gadicke, E. and Riethmüller, G. 1995. Prevention of manifest metastasis with monoclonal antibodies: a novel approach to immunotherapy of solid tumors. Eur. J. Cancer 31: 1326–1330.

    Article  Google Scholar 

  5. Maloney, D.G., Liles, T.M., Czerwinski, D.K., Waldichuk, C., Rosenberg, J., Grillo-Lopez, A., and Levy, R. 1994. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84: 2457–2466.

    CAS  PubMed  Google Scholar 

  6. Winter, G., Griffiths, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  PubMed  Google Scholar 

  7. Carter, P., Kelley, R.F., Rodrigues, M.L., Snedecor, B., Covarrubias, M., Velligan, M.D., et al. 1992. High level Escherichia coliexpression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.

    CAS  Google Scholar 

  8. Pack, P., Kujau, M., Schroeckh, U., Knüpfer, R., Wenderoth, R., Riesenberg, D., and Plückthun, A. 1993. Improved bivalent miniantibodies with identical avidity as whole antibodies produced by high cell density fermentation of Escherichia coli. Bio/Technology 11: 1271–1277.

    CAS  Google Scholar 

  9. Begent, R.H.J., Verhaar, M.J., Chester, K.A., Green, A.J., Napier, M.P., Hope-Stone, L.D., et al. 1996. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nature Medicine 2: 979–984.

    Article  CAS  PubMed  Google Scholar 

  10. Casey, J.L., Keep, P.A., Chester, K.A., Robson, L., Hawkins, R.E., and Begent, R.H. 1995. Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Methods 179: 105–116.

    Article  CAS  PubMed  Google Scholar 

  11. Yokota, T., Milenic, D.E., Whitlow, M., and Schlom, J. 1992. Rapid tumor penetration of single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52: 3402–3408.

    CAS  PubMed  Google Scholar 

  12. Pasqualini, R., Koivunen, E., and Ruoslahti, E. 1997. Alfa-v integrins as receptors for tumor targetin by circulating ligands. Nature Biotechnology 15: 542–546.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, K.J., Li, B., Winer, J., Armanii, M., Gillett, N., Phillips, H.S., and Ferrara, N. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  14. Folkman, J. 1995. Angiogenesis in cancer, vascular, rheumathoid and other disease. Nature Med. 1: 27–31.

    Article  CAS  PubMed  Google Scholar 

  15. O'Reilly, M.S., Holmgren, L., Chen, C., and Folkman, J. 1996. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med. 2: 689–692.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, H., Molema, G., King, S., Watkins, L., Edgington, T.S., and Thorpe, P.E. 1997. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor neo-vasculature. Science 275: 547–550.

    Article  CAS  PubMed  Google Scholar 

  17. Van den Hoff, A. 1988. Stromal involvement in malignant growth. Adv. Cancer Res. 50: 159–196.

    Article  Google Scholar 

  18. Risau, W. and Lemmon, V. 1988. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125: 441–450.

    Article  CAS  PubMed  Google Scholar 

  19. Camemolla, B., Balza, E., Siri, A., Zardi, L., Nicotra, M.R., Bigotti, A., and Natali, P.G. 1989. A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J. Cell Biol. 108: 1139–1148.

    Article  Google Scholar 

  20. Castellani, P., Viale, G., Dorcaratto, A., Nicolo', G., Kazmarek, J., Querze, G., and Zardi, L. 1994. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59: 612–618.

    Article  CAS  PubMed  Google Scholar 

  21. Camemolla, B., Neri, D., Castellani, P., Leprini, A., Neri, G., Pini, A., et al. 1996. Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer 68: 397–405.

    Article  Google Scholar 

  22. Huston, J.S., Levinson, D., Mudgett, H.M., Tai, M.S., Novotny, J., Margolies, M.N., et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.M., et al. 1988. Single-chain antigen-binding proteins. Science 242: 423–426.

    Article  CAS  PubMed  Google Scholar 

  24. Nissim, A., Hoogenboom, H.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., and Winter, G. 1994. Antibody reagents from a ‘single-pot’ phage display library as immunochemical reagents. EMBO J. 13: 692–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M., and Winter, G. 1992. By-passing immunization: building high-affinity human antibodies by chain shuffling. Bio/Technology 10: 779–783

    CAS  Google Scholar 

  26. Low, N., Holliger, P., and Winter, G. 1996. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260: 359–368.

    Article  CAS  PubMed  Google Scholar 

  27. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

    Article  CAS  PubMed  Google Scholar 

  29. Folli, S., Westermann, P., Braichotte, D., Pelegrin, A., Weignieres, G., van der Bergh, H., and Mach, J.P. 1994. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54: 2643–2649.

    CAS  PubMed  Google Scholar 

  30. Neri, D., Prospero, T., Petrul, H., Winter, W., Browne, M., and Vanderpant, L. 1996. A multi-purpose high-sensitivity luminescence analyser (LUANA): use in gel electrophoresis. Bio/Techniques 20: 708–713.

    CAS  Google Scholar 

  31. Friedlander, M., Theesfeld, C.L., Sugita, M., Fruttiger, M., Thomas, M.A., Chang, S., and Cheresh, D.A. 1996. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93: 9764–9769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams, G.P., McCartney, J.E., Tai, M.S., Oppermann, H., Huston, J.S., Stafford, W.F. III, et al. 1993. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB2 sincle-chain Fv. Cancer Res. 53: 4026–4034.

    CAS  PubMed  Google Scholar 

  33. King, D.J., Turner, A., Farnsworth, A.P.H., Adair, J.R., Owens, R.J., Pedley, R.B., et al. 1994. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54: 6176–6185.

    CAS  PubMed  Google Scholar 

  34. Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L.E., Wong, J.Y., et al. 1996. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56: 3055–3061.

    CAS  PubMed  Google Scholar 

  35. Peters, J.H., Chen, G., and Hynes, R.O. 1996. Fibronectin isoform distribution in the mouse. II. Differential distribution of the alternatively spliced EIIIB, EIIIA, and V segments in the adult mouse. Cell Adhes. Commun. 4: 127–148.

    Google Scholar 

  36. Bennett, V.D., Pallante, K.M., and Adams, S.L. 1991. The splicing pattern of fibronectin mRNA changes during chondrogenesis resulting in an unusual form of the mRNA in cartilage. J. Biol. Chem. 266: 5918–5924.

    CAS  PubMed  Google Scholar 

  37. George, A.J., Jamar, F., Tai, M.S., Heelan, B.T., Adams, G.P., McCartney, J.E., et al. 1995. Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site: technetiurn-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide. Proc. Natl. Acad. Sci. USA 92: 8358–8362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liberatore, M., Neri, D., Neri, G., Pini, A., lurilli, A.P., Ponzo, F., et al. 1995. Efficient one-step direct labeling of recombinant antibodies with 99mTc. Eur. J. Nuclear Med. 22: 1326–1329.

    Article  CAS  Google Scholar 

  39. Neri, D. and Zardi, L. 1997. New approaches to tumor targeting, in Therapy of malignancies with radio-conjugate monoclonal antibodies: present possibilities and future perspectives. Riva P. (ed.) Harwood Academic Publishers, Amsterdam, The Netherlands. In press.

    Google Scholar 

  40. Padlan, E.A. 1994. Anatomy of the antibody molecule. Mol. Immunol. 31: 169–217.

    Article  CAS  PubMed  Google Scholar 

  41. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  PubMed  Google Scholar 

  42. Hoogenboom, H.R., Griffiths, A.D., Johnson, K.S., Chiswell, D.J., Hudson, P., and Winter, G. 1991. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 19: 4133–4137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibson, T.J. 1984. Studies on the Epstein-Barr virus genome. Ph.D. Thesis, University of Cambridge, Cambridge, UK.

  44. Jönsson, U., Fägerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., et al. 1991. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11: 620–627.

    PubMed  Google Scholar 

  45. Neri, D., Petrul, H., Light, Y., Marais, R., Britton, K.E., Winter, G., and Creighton, A.M. 1996. Radioactive labeling of recombinant antibody fragments by phos-phorylation using human casein kinase II and [γ-32P]-ATP. Nature Biotechnology 14: 385–390.

    Article  Google Scholar 

  46. McCafferty, J., Griffiths, A.D., Winter, G., and Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348: 552–554.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, D., Carnemolla, B., Nissim, A. et al. Targeting by affinity–matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15, 1271–1275 (1997). https://doi.org/10.1038/nbt1197-1271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1197-1271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing