Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Structure–based design and characterization of exocyclic peptidomimetics that inhibit TNFα binding to its receptor

Abstract

Exocyclic small peptidomimetics corresponding to three critical binding sites of tumor necrosis factor (TNF)-receptor(l) have been designed based on atomic features deduced from the crystal structures of TNFα and the TNFβ/TNF-receptor(l) complex and a model of an anti-TNFα monoclonal antibody. TNFα antagonistic activities were evaluated by binding assays using soluble receptor or intact receptor on cells as well as an apoptosis/cytotoxicity assay. The most critical interaction site for rational design of peptidomimetics was localized to the Ioop1/domain3 of the TNF-receptor. The best antagonist showed 5 μM inhibition in the binding assay. Biologically, the mimetics inhibited TNFα-mediated apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., and Williamson, B. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72: 3666–3670.

    Article  CAS  Google Scholar 

  2. Beutler, B. 1995. TNF, immunity and inflammatory disease: lessons of the past decade. J. Investig. Med. 43: 227–235.

    CAS  PubMed  Google Scholar 

  3. Hotamisligil, G.S. and Spiegelman, B.M. 1994. Tumor necrosis factor a: a key component of the obesity-diabetes link. Diabetes 43: 1271–1278.

    Article  CAS  Google Scholar 

  4. Williams, R.O., Feldmann, M., and Maini, R.N. 1992. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 89: 9784–9788.

    Article  CAS  Google Scholar 

  5. Baker, D., Butler, D., Scallon, B.J., O'Neil, J.K., Turk, J.L., and Feldmann, M. 1994. Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur. J. Immunol. 24: 2040–2048.

    Article  CAS  Google Scholar 

  6. Suitters, A.J., Foulkes, R., Opal, S.M., Palardy, J.E., Emtage, S., Rolfe, M., et al. 1994. Differential effect of isotype on efficacy of anti-tumor necrosis factor a chimeric antibodies in experimantal septic shock. J. Exp. Med. 179: 849–856.

    Article  CAS  Google Scholar 

  7. Knight, D.M., Trinh, H., Le, J., Siegel, S., Shealy, D., McDonough, M., et al. 1993. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immun. 30: 1443–1453.

    Article  CAS  Google Scholar 

  8. Maini, R.N., Elliott, M.J., Brennan, F.M., Williams, R.O., Chu, C.Q., Paleolog, E., et al. 1995. Monoclonal anti-TNFα antibody as a probe of pathogenesis and therapy of rheumatoid disease. Immunol. Rev. 144: 195–223.

    Article  CAS  Google Scholar 

  9. Lorenz, H.-M., Antoni, C., Valerius, T., Repp, R., Grunke, M., Schwardtner, N., et al. 1996. In vivo blockade of TNF-α by intravenous infusion of a chimeric monoclonal TNF-α antibody in patients with rheumatoid arthritis: short term cellular and molecular effects. J. Immunol. 156: 1646–53.

    CAS  PubMed  Google Scholar 

  10. Walker, R.E., Spooner, K.M., Kelly, G., McCloskey, R.V., Woody, J.N., Falloon, J., et al. 1996. Inhibition of immunoreactive tumor necrosis factor-α by a chimeric antibody in patients infected with human immunodeficiency virus type 1. J. Infect. Dis. 174: 63–68.

    Article  CAS  Google Scholar 

  11. Tak, P.P., Taylor, P.C., Breedveld, F.C., Smeets, T.M., Daha, M.R., Kluin, P.M., et al. 1996. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor α monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum. 39: 1077–1081.

    Article  CAS  Google Scholar 

  12. Schall, T.J., Lewis, M., Koller, K.J., Lee, A., Rice, G.C., Wong, G.H.W., et al. 1990. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370.

    Article  CAS  Google Scholar 

  13. Smith, C.A., Davis, T., Anderson, D., Solam, L., Beckmann, M.P., Jerzy, R., et al. 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019–1023.

    Article  CAS  Google Scholar 

  14. Peppel, K., Crawford, D., and Beutler, B. 1991. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J. Exp. Med. 174: 1483–1489.

    Article  CAS  Google Scholar 

  15. Scallon, B.J., Trinh, H., Nedelman, M., Brennan, F.M., Feldmann, M., and Ghrayeb, J. 1995. Functional comparisons of different tumor necrosis factor receptor/IgG fusion proteins. Cytokine 7: 759–770.

    Article  CAS  Google Scholar 

  16. Williams, R.O., Ghrayeb, J., Feldmann, M., and Maini, R.N. 1995. Successful therapy of collagen-induced arthritis with TNF receptor-IgG fusion protein and combination with anti-CD4. Immunology 84: 433–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Suffredini, A.F., Reda, D., Banks, S.M., Tropea, M., Agosti, J.M., and Miller, R. 1995. Effects of recombinant dimeric TNF receptor on human inflammatory responses following intravenous endotoxin administration. J. Immunol. 155: 5038–5045.

    CAS  PubMed  Google Scholar 

  18. Baumgartner, S., Moreland, L.W., Schiff, M.H., Tindall, E., Fleischmann, R.M., Weaver, A., et al. 1996. Double-blind, placebo-controlled trial of tumor necrosis factor receptor (p80) fusion protein (TNFR:Fc) in active rheumatoid arthritis. Arthritis Rheum. 39(Suppl): S74.

    Google Scholar 

  19. Orfanoudakis, G., Karim, B., Bourel, D., and Weiss, E. 1993. Bacterially expressed Fabs of monoclonal antibodies neutralizing tumor necrosis factor a in vitro retain full binding and biological activity. Mol. Immun. 30: 1519–1528.

    Article  CAS  Google Scholar 

  20. Jespers, L.S., Roberts, A., Mahler, S.M., Winter, G., and Hoogenboom, H.R. 1994. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Bio/Technology 12: 899–903.

    CAS  Google Scholar 

  21. Reinhart, K., Wiegand-Lohnert, C., Grimminger, F., Kaul, M., Withington, S., Treacher, D., et al. 1996. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study. Crit. Care Med. 24: 733–742.

    Article  CAS  Google Scholar 

  22. Döring, E., Stigler, R., Grütz, G., Baehr, R., and Schneider-Mergener, J. 1994. Identification and characterization of a TNFα antagonist derived from a monoclonal antibody. Mol. Immun. 31: 1059–1067.

    Article  Google Scholar 

  23. Hwang, C., Gatanga, M., Innins, E.K., Yamamoto, R.S., Granger, G.A., and Gatanga, T. 1991. A 20 amino acid synthetic peptide of a region from the 55 kDa human TNF receptor inhibits cytolytic and binding activities of recombinant human tumor necrosis factor in vitro. Proc. R. Soc. Lond. B. 245: 115–119.

    Article  CAS  Google Scholar 

  24. Lie, B.-L., Tunemoto, D., Hemmi, H., Mizukami, Y., Fukuda, H., Kikuchi, H., et al. 1992. Identification of the binding site of 55kDa tumor necrosis factor receptor by synthetic peptides. Biochem. Biophys. Res. Commun. 188: 503–509.

    Article  CAS  Google Scholar 

  25. Saragovi, H.U., Fitzpatrick, D., Raktabutr, A., Nakanishi, H., Kahn, M., and Greene, M.I. 1991. Design and synthesis of a mimetic from an antibody complementarity-determining region. Science 253: 792–795.

    Article  CAS  Google Scholar 

  26. Taub, R. and Greene, M.I. 1992. Functional validation of ligand mimicry by anti-receptor antibodies: structural and therapeutic implications. Biochemistry 31: 7431–7435.

    Article  CAS  Google Scholar 

  27. Saragovi, H.U. and Greene, M.I. 1992. Constrained peptides and mimetics as probes of protein secondary structure. Immunomethod 1: 5–9.

    Article  CAS  Google Scholar 

  28. McDonnell, J.M., Beavil, A.J., Mackay, G.A., Jameson, B.A., Korngold, R., Gould, H.J., and Sutton, B.J. 1996. Structure based design and characterization of peptide that inhibit IgE binding to its high-affinity receptor. Nat. Struct. Biol. 3: 419–426.

    Article  CAS  Google Scholar 

  29. Zhang, X., Piatier-Tonneau, P., Auffray, C., Murali, R., Mahapatra, A., Zhang, F., et al. 1996. Synthetic CD4 exocyclic peptides antagonize CD4 holoreceptor binding and T cell activation. Nature Biotechnology 14: 472–475.

    Article  CAS  Google Scholar 

  30. Zhang, X., Gaubin, M., Briant, L., Srikantan, V., Murali, R., Saragovi, M.H., et al. 1997. Synthetic CD4 exocyclics inhibit binding of human immunodeficiency virus type 1 envelope to CD4 and virus replication in T lymphocytes. Nature Biotechnology 15: 150–154.

    Article  Google Scholar 

  31. Banner, D.W., D'Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.-J., Broger, C., et al. 1993. Crystal structure of the soluble human 55 kd TNF receptor-human TNFp complex: implications for TNF receptor activation. Cell 73: 431–445.

    Article  CAS  Google Scholar 

  32. Eck, M.J. and Sprang, S.R. 1989. The structure of tumor necrosis factor-α at 2.6 Å resolution. J. Biol. Chem. 264: 17595–17605.

    CAS  PubMed  Google Scholar 

  33. Habeeb, F.F. 1973. A sensitive method for localization of disulfide containing peptides in column effluents. Anal. Bioch. 56: 60–65.

    Article  CAS  Google Scholar 

  34. Angeletti, R.H., Bibbs, L., Bonewald, L.F., Fields, G.B., McMurray, J.S., Moore, W.T., and Stults, J.T. 1996. Formation of a disulfide bond in an octreotide-like peptide: a multicenter study, pp. 81–91 in Techniques in protein chemistry VII. Marsak, D.R. (ed.) Academic Press, Inc., San Diego, CA.

    Google Scholar 

  35. Espevik, T., Brockhaus, M., Loetscher, H., Nonstad, U., and Shalaby, R. 1990. Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J. Exp. Med. 171: 415–426.

    Article  CAS  Google Scholar 

  36. Larrick, J.W. and Wright, S.C. 1990. Cytotoxic mechanism of tumor necrosis factor-α. FASEB J. 4: 3215–3223.

    Article  CAS  Google Scholar 

  37. Hennet, T., Richter, C., and Peterhans, E. 1993. Tumor necrosis factor-α induces superoxide anion generation in mitochondria of L929 cells. Biochem. J. 289: 587–592.

    Article  CAS  Google Scholar 

  38. Hansen, M.B., Nielsen, S.E., and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119: 203–210.

    Article  CAS  Google Scholar 

  39. Yamagishi, J., Kawashima, H., Matsuo, N., Ohue, M., Yamayoshi, M., Fukui, T., et al. 1990. Mutational analysis of structure-activity relationship in human tumor necrosis factor-α. Protein Eng. 3: 713–719.

    Article  CAS  Google Scholar 

  40. Van Ostade, X., Tavernier, J., Prange, T., and Fiers, W. 1991. Localization of the active site of human tumor necrosis factor (hTNF) by mutational analysis. EMBO J. 10: 827–836.

    Article  CAS  Google Scholar 

  41. Jones, E.Y., Stuart, D.I., and Walker, N.P.C. 1992. Crystal structure of TNF. Immunology Series 56: 93–127.

    CAS  PubMed  Google Scholar 

  42. Zhang, X.-M., Weber, I., and Chen, M.-J. 1992. Site-directed mutational analysis of human tumor necrosis factor-α receptor binding site and structure-functional relationship. J. Biol. Chem. 267: 24069–24075.

    CAS  PubMed  Google Scholar 

  43. Yone, K., Bajard, S., Tsunekawa, N., and Suzuki, J. 1995. Epitopic regions for antibodies against tumor necrosis factor α: analysis by synthetic peptide mapping. J. Biol. Chem. 270: 19509–19515.

    Article  CAS  Google Scholar 

  44. Eck, M.J., Ultsch, M., Rinderknecht, E. de Vos, A.M., and Sprang, S.R. 1992. The structure of human lymphotoxin (tumor necrosis factor-β) at 1.9-Å resolution. J. Biol. Chem. 267: 2119–2122.

    CAS  PubMed  Google Scholar 

  45. Ponder, J.W., and Richards, F.M. Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193: 775–791 (1987).

    Article  CAS  Google Scholar 

  46. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.E., Jr., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M. The protein data bank: a computer-based archiral file for macromolecular structures. J. Mol. Biol. 112: 535–42 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Murali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasaki, W., Kajino, Y., Kajino, K. et al. Structure–based design and characterization of exocyclic peptidomimetics that inhibit TNFα binding to its receptor. Nat Biotechnol 15, 1266–1270 (1997). https://doi.org/10.1038/nbt1197-1266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1197-1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing