Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production

Abstract

Sulfite is widely used as an antioxidant in food production. In beer brewing, sulfite has the additional role of stabilizing the flavor by forming adducts with aldehydes. Inadequate amounts of sulfite are sometimes produced by brewer's yeasts, so means of controlling the sulfite production are desired. In Saccharomyces yeasts, MET10 encodes a subunit of sulfite reductase. Partial or full elimination of MET10 gene activity in a brewer's yeast resulted in increased sulfite accumulation. Beer produced with such yeasts was quite satisfactory and showed increased flavor stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baroni, M., Livian, S., Martegani, E., and Albaghina, L. 1986. Molecular cloning and regulation of the expression of the MET2 gene of Saccharomyces carevisiae . Gane 46: 71–78.

    CAS  Google Scholar 

  2. Cherest, H., Thao, N.N., and Surdin-Kerjan, Y. 1985. Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae . Gene. 34: 269–281.

    Article  CAS  Google Scholar 

  3. Hansen, J., Cherest, H., and Kielland-Brandt, M.C. 1994. Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carls-bergensis, encode the α subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J. Bacteriol. 176: 6050–6058.

    Article  CAS  Google Scholar 

  4. Korch, C., Mountain, H.A., and Byström, A.S. 1991. Cloning, nucleotide sequence and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae . Mol. Gen. Genet. 229: 96–108.

    Article  CAS  Google Scholar 

  5. Langin, T., Faugeron, G., Goyon, C., Nicolas, A., and Rossignol, J.-L. 1986. The MET2 gene of Saccharomyces cerevisiae: molecular cloning and nucleotide sequence. Gene 49: 283–293.

    Article  CAS  Google Scholar 

  6. Mountain, H.A., Byström, A.S., Larsen, J.T., and Korch, C. 1991. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae . Yeast 7: 781–803.

    Article  CAS  Google Scholar 

  7. Sangsoda, S., Cherest, H., and Surdin-Kerjan, Y. 1985. The expression of the MET25 gene of Saccharomyces cerevisiae is regulated transcriptionally. Mol. Gen. Genet. 200: 407–414.

    Article  CAS  Google Scholar 

  8. Thomas, D., Cherest, H., and Surdin-Kerjan, Y. 1989. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol. Cell. Biol. 9: 3292–3298.

    Article  CAS  Google Scholar 

  9. Thomas, D., Barbey, R., and Surdin-Kerjan, Y. 1990. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3′-phosphoadenylylsulfate reductase structural gene. J. Biol. Chem. 265: 15518–15524.

    CAS  PubMed  Google Scholar 

  10. Brewer, J.D. and Fenton, M.S. 1980. The formation of sulphur dioxide during fermentation. Rroc. Conv. Inst. Brew., Australia and New Zealand section 16: 155–164.

    Google Scholar 

  11. Dufour, J.-P., Carpentier, B., Kulakumba, M. Van Haecht, J.-L., and Devreux, A. 1989. Alteration of SO2 production during fermentation. Proc. Eur. Brew. Conv. Congr., Zürich, pp. 331–338.

  12. Gyllang, H., Winge, M., and Korch, C. 1989. Regulation of SO2 formation during fermentation. Proc. Eur. Brew. Conv. Congr., Zürich, pp. 347–354.

  13. Korch, C., Mountain, H.A., Gyllang, H., Winge, M., and Brehmer, P. 1991. A mechanism for sulfite production in beer and how to increase sulfite levels by recombinant genetics. Proc. Eur. Brew. Conv. Congr., Lisbon, pp. 201–208.

  14. Thomas, D., Barbey, R., Henry, D., and Surdin-Kerjan, Y. 1992. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J. Gen. Microbiol. 138: 2021–2028.

    Article  CAS  Google Scholar 

  15. Gjermansen, C. 1991. Comparison of genes in Saccharomyces cerevisiae and Saccharomyces carlsbergensis. PhD thesis, University of Copenhagen, Denmark.

  16. Hansen, J., and Kielland-Brandt, M.C. 1994. Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S. monacensis . Gene 140: 33–40.

    Article  CAS  Google Scholar 

  17. Nilsson-Tillgren, T., Gjermansen, C., Holmberg, S., Petersen, J.G.L., and Kielland-Brandt, M.C. 1986. Analysis of chromosome V and the ILV1 gene from Saccharomyces carlsbergensis . Carlsberg Res. Commun. 51: 309–326.

    Article  CAS  Google Scholar 

  18. Petersen, J.G.L., Nilsson-Tillgren, T., Kielland-Brandt, M.C., Gjermansen, C., and Holmberg, S. 1987. Structural heterozygosis at genes ILV2 and ILV5 in Saccharomyces carlsbergensis . Curr. Genet. 12: 167–174.

    Article  CAS  Google Scholar 

  19. Gjermansen, C. and Sigsgaard, P. 1981. Construction of a hybrid brewing strain of Saccharomyces carlsbergensis by mating of meiotic segregants. Carlsberg Res. Commun. 46: 1–11.

    Article  CAS  Google Scholar 

  20. Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. 1981. Yeast transformation: A model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78: 6354–6358.

    Article  CAS  Google Scholar 

  21. European Brewing Convention. Analytica Microbiologica. 1977. J. Inst. Brew. 83: 109–118.

  22. Nordlöv, H. 1985. Formation of sulphur dioxide during beer fermentation. Proc. Eur. Brew. Conv. Congr., Helsinki, pp. 291–298.

  23. Meilgaard, M.C. 1975. Flavor chemistry of beer: part II: flavor and threshold of 239 aroma volatiles. MBAA Tech. Quart. 12: 151–168.

    CAS  Google Scholar 

  24. Hinze, H. and Holzer, H. 1986. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch. Microbiol. 145: 27–31.

    Article  CAS  Google Scholar 

  25. Maier, K., Hinze, H., and Leuschel, L. 1986. Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae . Biochim. Biophys. Acta 848: 120–130.

    Article  CAS  Google Scholar 

  26. Pickerell, A.T.W., Hwang, A., and Axcell, B.C. 1991. Impact of yeast-handling procedures on beer flavor development during fermentation. J. Am. Sec. Brew. Chem. 49: 87–92.

    CAS  Google Scholar 

  27. Pilkington, B.J. and Rose, A.H. 1988. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite. J. Gen. Microbiol. 134: 2823–2830.

    CAS  PubMed  Google Scholar 

  28. Stratford, M., Morgan, P., and Rose, A.H. 1987. Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii . J. Gen. Microbiol. 133: 2173–2179.

    CAS  Google Scholar 

  29. Dufour, J.-P. 1991. Influence of industrial brewing and fermentation working conditions on beer SO2 level and flavour stability. Proc. Eur. Brew. Conv. Congr., Lisbon, pp. 209–216.

  30. Bamforth, C.W. and Anness, B.J. 1981. The role of dimethyl sulphoxide reductase in the formation of dimethyl sulphide during fermentations. J. Inst. Brew. 87: 30–34.

    Article  CAS  Google Scholar 

  31. Anness, B.J. and Bamforth, C.W. 1982. Dimethyl sulphide—a review. J. Inst. Brew. 88: 244–252.

    Article  CAS  Google Scholar 

  32. Cherest, H. and Surdin-Kerjan, Y. 1992. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130: 51–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sherman, F. 1991. Getting started with yeast, pp. 3–21 in Methods in Enzymology 194: Guide to Yeast Genetics and Molecular Biology. Guthrie, C. and Fink, G.R. (eds.). Academic Press Inc., San Diego, CA.

    Chapter  Google Scholar 

  34. Rikkerink, E.H.A., Magee, B.B., and Magee, P.T. 1988. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans . J. Bacteriol 170: 895–899.

    Article  CAS  Google Scholar 

  35. Hough, J.S., Briggs, D.E., Stevens, R., and Young, T.W. 1982. p. 881 in Malting and Brewing Science, Vol. II, Hopped Wort and Beer, 2nd Ed. Chapman and Hall, London.

    Book  Google Scholar 

  36. Hadfield, C. 1994. Construction of cloning and expression vectors, pp. 17–48 in Molecular Genetics of Yeast. A Practical Approach. Johnston, J.R. (ed.). Oxford University Press, Oxford, UK.

    Google Scholar 

  37. Schiestl, R.H. and Gietz, R.D. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339–346.

    Article  CAS  Google Scholar 

  38. Sigsgaard, P. and Rasmussen, J.N. 1985. Screening of the brewing performance of new yeast strains. J. Am. Soc. Brew. Chem. 43: 104–108.

    CAS  Google Scholar 

  39. Grant, W.M. 1947. Colorimetric determination of sulfur dioxide. Anal. Chem. 19: 345–346.

    Article  CAS  Google Scholar 

  40. Haukeli, A.D. and Lie, S. 1971. The influence of α-acetohydroxy acids on the determination of vicinal diketones in beer during fermentation. J. Inst Brew. 77: 538–543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J., Kielland-Brandt, M. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Nat Biotechnol 14, 1587–1591 (1996). https://doi.org/10.1038/nbt1196-1587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1196-1587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing