Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Sustained somatic gene inactivation by viral transfer of Cre recombinase

Abstract

Transgenic and knockout mice have proven invaluable tools for analyzing physiologically relevant functions of numerous genes. In some cases, however, pleiotropic effects that result from a variable requirement for a particular gene in different tissues, cell types, or stages of embryonic development may complicate the analysis due to a complex phenotype or embryonic lethality. The loxP/Cre-mediated recombination system, which allows tissue-specific gene targeting in the mouse, can be used to overcome these problems. A limitation of current methods is that a mouse carrying a loxP-tagged gene must be crossed with a transgenic mouse expressing the Cre recombinase in an appropriate tissue to obtain the desired gene rearrangement. We have used recombinant adenovirus carrying the Cre recombinase to induce virtually quantitative somatic cell gene disruption in the liver. The targeted gene was the multifunctional low-density lipoprotein receptor-related protein (LRP), a cell surface receptor for α2-macroglobulin and other ligands. Transient expression of Cre following adenoviral infection produced the predicted gene rearrangement, functionally inactivating LRP in the liver. Rearrangement occurred within 6 days after infection and remained stable for at least 28 days. The results demonstrate the suitability of adenoviral Cre gene transfer to induce long-term, quantitative, and temporally controlled gene disruption in the mouse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M. and Hoess, R. 1981. Site-specific recombination and its role in the life cylce of bacteriophage P1. Cold Spring Harbor. Symp. 45: 297–309.

    Article  CAS  Google Scholar 

  2. Sauer, B. 1993. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 225: 890–900.

    Article  CAS  Google Scholar 

  3. Orban, P.C., Chui, D. and Marth, J.D. 1992. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6861–6865.

    Article  CAS  Google Scholar 

  4. Lakso, M., Sauer, B., Mosinger, B. Jr., Lee, E.J., Manning, R.W., Yu, S.-H. et al. 1992. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6232–6236.

    Article  CAS  Google Scholar 

  5. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. and Rajewski, K. 1994. Deletion of the DNA polymerase ß gene in T cells using tissue-specific gene targeting. Science 265: 103–106.

    Article  CAS  Google Scholar 

  6. Kühn, R., Schwenk, F., Aguet, M. and Rajewsky, K. 1995. Inducitale gene targeting in mice. Science 269: 1427–1429.

    Article  Google Scholar 

  7. Ramirez-Solis, R., Liu, P. and Bradley, A. 1995. Chromosome engineering in mice. Nature 378: 720–724.

    Article  CAS  Google Scholar 

  8. Van Deursen, J., Fornerod, M., Van Rees, B. and Grosveld, G. 1995. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. USA 92: 7376–7380.

    Article  CAS  Google Scholar 

  9. Copp, A.J. 1995. Death before birth: clues from gene knockouts and mutations. TIG 11: 87–93.

    Article  CAS  Google Scholar 

  10. Krieger, M. and Herz, J. 1994. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Ann. Rev. Biochem. 63: 601–637.

    Article  CAS  Google Scholar 

  11. Herz, J., Clouthier, D.E. and Hammer, R.E. 1992. LDL receptor-related protein internalizes and degrades uPA/PAI-1 complexes and is essential for embryo implantation. Cell 71: 411–421.

    Article  CAS  Google Scholar 

  12. Anton, M. and Graham, F.L. 1995. Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69: 4600–4606.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pereira, D.S., Rosenthal, K.L. and Graham, F.L. 1995. Identification of adenovirus E1A regions which affect MHC class I expression and susceptibility to cytotoxic T lymphocytes. Virol. 211: 268–277.

    Article  CAS  Google Scholar 

  14. Yang, Y. and Wilson, J.M. 1995. Clearance of adenovirus-infected hepatocytes by MHC class l-restricted CD4+ CTLs in vivo. J. Immunol. 155: 2564–2570.

    CAS  PubMed  Google Scholar 

  15. Yang, Y., Nunes, F.A., Berencsi, K., Furth, E.E., Gonczol, E., and Wilson, J.M. 1994. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91: 4407–4411.

    Article  CAS  Google Scholar 

  16. Stratford-Perricaudet, L.D., Makeh, I., Perricaudet, M. and Briand, P. 1992. Widespread long-term gene transfer to mouse skeletal muscle and heart. J. Clin. Invest. 90: 626–630.

    Article  CAS  Google Scholar 

  17. Herz, J. and Gerard, R.D. 1993. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl. Acad. Sci. USA 90: 2812–2816.

    Article  CAS  Google Scholar 

  18. Soriano, P., Montgomery, C., Geske, R. and Bradley, A. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702.

    Article  CAS  Google Scholar 

  19. Strickland, D.K., Ashcom, J.D., Williams, S., Burgess, W.H., Migliorini, M. and Argraves, W.S. 1990. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 265: 17401–17404.

    CAS  PubMed  Google Scholar 

  20. Kristensen, T., Moestrup, S.K., Gliemann, J., Bendtsen, L., Sand, O. and Sottrup-Jensen, L. 1990. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the α2-macroglobulin receptor. FEBS Lett. 276: 151–155.

    Article  CAS  Google Scholar 

  21. Wang, Y., Krushel, L.A. and Edelman, G.M. 1996. Targeted DNA recombination in vivo using an adenovirus carrying the ere recombinase. Proc. Natl. Acad. Sci. USA 93: 3932–3936.

    Article  CAS  Google Scholar 

  22. Kütt, H., Herz, J. and Stanley, K.K. 1989. Structure of the low-density lipoprotein receptor-related protein (LRP) promoter. Biochim. Biophys. Acta 1009: 229–236.

    Article  Google Scholar 

  23. Willnow, T.E. and Herz, J. 1994. Homologous recombination for gene replacement in mouse cell lines, pp. 305–334 in Methods in cell biology 43. Roth, M. (ed.). Academic Press, San Diego.

    Google Scholar 

  24. Willnow, T.E., Armstrong, S.A., Hammer, R.E. and Herz, J. 1995. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc. Natl. Acad. Sci. USA 92: 4537–4541.

    Article  CAS  Google Scholar 

  25. Willnow, T.E., Sheng, Z., Ishibashi, S. and Herz, J. 1994. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264: 1471–1474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohlmann, A., Gotthardt, M., Willnow, T. et al. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat Biotechnol 14, 1562–1565 (1996). https://doi.org/10.1038/nbt1196-1562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1196-1562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing