Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

A High Capacity Assay for Inhibitors of Human Papillomavirus DNA Replication

Abstract

The discovery of antiviral compounds against human papillomaviruses (HPV) has been hindered by the difficulties in culturing virus in vitro or assaying stable HPV DNA replication. However, plasmids containing the HPV replication origin replicate transiently upon co-transfection with HPV E1 and E2 expression vectors. We have adapted this assay using secreted alkaline phosphatase (SAP) as a reporter for rapid analysis of DNA copy number. Use of the S V40 early promoter in controlling SAP expression was critical in ensuring both a strong signal and copy number dependence: the stronger β-actin promoter inhibited replication, while the weaker SV40 late promoter yielded very low levels of SAP. The precise configuration of the E1 and E2 expression vectors also was critical, most pre-existing vectors did not support efficient replication and SAP secretion. The extent of DNA replication and SAP secretion were both proportional to the amount of E1/E2 vector used in transfections; under optimal conditions SAP increased 100-fold during replication. The assay has been developed for compound screening in 96-well plates and several inhibitors have been identified. Quantitative Southern blot analysis has shown that most of these inhibit HPV DNA replication rather than SAP accumulation or activity, and several are under test hi models of viral replication. The assay also provides a rapid system for functional analysis of the HPV E1, E2 genes and the replication origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gissmann, L. 1993. Human papilloviruses and genital cancer. Semin. Cancer Biol. 3: 253–261.

    Google Scholar 

  2. Stanley, M.A. 1994. Virus-keratinocyte interactions in the infectious cycle. In: Human Papillomaviruses and Cervical Cancer, Biology and Immunology. Stern, P. L. and Stanley, M. A. (Eds.). Oxford University Press, Oxford.

    Chapter  Google Scholar 

  3. Ustav, M. and Stenlund, A. 1991. Transient replication of BPV-1 requires two viral polypeptides encoded by the El and E2 open reading frames. EMBO J. 10: 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiang, C.-M., Ustav, M., Stenlund, A., Ho, T.F., Broker, T.R. and Chow, L.T. 1992. Viral El and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc. Natl. Acad. Sci. USA 89: 5799–5803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Vecchio, A.M., Romanczuk, H., Howley, P.M. and Baker, C.C. 1992. Transient replication of human papillomavirus DNAs. J. Virol. 66: 5949–5958.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Remm, M., Brain, R. and Jenkins, J.R. 1992. The E2 binding sites determine the efficiency of replication for the origin of human papillomavirus type 18. Nucleic Acids Res. 20: 6015–6021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, L., Li, R., Mohr, I., Claik, R. and Botchan, M.R. 1991. Activation of BPV-1 replication in vitro by the transcription factor E2. Nature 353: 628–632.

    Article  CAS  PubMed  Google Scholar 

  8. Kuo, S.-R., Liu, J.-S., Broker, T.R. and Chow, L.T. 1994. Cell-free replication of the human papillomavirus DNA with homologous viral El and E2 proteins and human cell extracts. J. Biol. Chem. 269: 24058–24065.

    CAS  PubMed  Google Scholar 

  9. Seo, Y.-S., Muller, F., Lusky, M. and Hurwitz, J. 1993. Bovine papillomavirus (BPV)-encoded El protein contains multiple activities required for BPV DNA replication. Proc. Natl. Acad. Sci. USA 90: 702–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, L., Mohr, I., Fouts, E., Lim, D.A., Nohaile, M. and Botchan, M. 1993. The El protein of bovine papillomavirus 1 is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 90: 5086–5090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bream, G.L., Ohmstede, C.-A. and Phelps, W.C. 1993. Characterisation of the HPV-11 El and E2 proteins expressed in insect cells. J. Virol. 67: 2655–2663.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughes, F.J. and Romanos, M.A. 1992. El protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res. 21: 5817–5823.

    Article  Google Scholar 

  13. Seo, Y.S., Muller, F., Lusky, M., Gibbs, E., Kim, H.Y., Phillips, B. and Hurwitz, J. 1993a. Bovine papillomavirus (BPV)-encoded E2 protein enhances binding of El protein to the BPV DNA replication origin. Proc. Natl. Acad. Sci. USA 90: 2865–2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, P., Copeland, W., Yang, L., Wang, T., Botchan, M.R. and Mohr, I.J. 1994. The cellular DNA polymerase α-primase is required for papillomavirus DNA replication and associates with the viral El helicase. Proc. Natl. Acad. Sci. USA 91: 8700–8704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, R. and Botchan, M.R. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV1 DNA replication. Cell 73: 1207–1221.

    Article  CAS  PubMed  Google Scholar 

  16. Haase, S.B., Heinzel, S.S. and Calos, M.P. 1994. Transcription inhibits the replication of autonomously replicating plasmids in human cells. Mol. Cell. Biol. 14: 2516–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sverdrup, F. and Khan, S.A. 1994. Replication of human papillomavirus (HPV) DNAs supported by the HPV type 18 El and E2 proteins. J. Virol. 68: 505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nasseri, M., Hirochika, R., Broker, T.R. and Chow, L.T. 1987. A human papillomavirus type 11 transcript encoding an E1-E4 protein. Virology 159: 433–439.

    Article  CAS  PubMed  Google Scholar 

  19. Higgins, G.D., Uzelin, D.M., Phillips, G.E., McEvoy, P., Marin, R. and Burrell, C.J. 1992. Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. J. Gen. Virol. 73: 2047–2057.

    Article  CAS  PubMed  Google Scholar 

  20. Hummel, M., Hudson, J.B. and Laimins, L.A. 1992. Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J. Virol. 66: 6070–6080.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlen, S. and Beard, P. 1993. Identification and characterisation of novel promoters in the genome of human papillomavirus type 18. J. Virol. 67: 4296–4306.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, X., Xiao, W. and Brandsma, J.L. 1994. Papilloma formation by cottontail rabbit papillomavirus requires El and E2 regulatory genes in addition to E6 and E7 transforming genes. J. Virol. 68: 6097–6102.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. May, K., Planterose, D.N., Browne, M.J. and Perkins, R.M. 1991. Development of a novel marker gene based assay system for detection and evaluation of antiviral agents with activity against papillomaviruses. Antiviral Chem. and Chemother. 2: 363–370.

    Article  CAS  Google Scholar 

  24. Sterling, J., Stanley, M., Gatward, G. and Minson, T. 1990. Production of human papillomavirus type 16 virions in a keratinocyte line. J. Virol. 64: 6305–6307.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon, S., Allen-Hoffmann, B.L. and Lambert, P. 1995. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage to cells. J. Virol. 69: 2989–2997.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyers, C., Frattini, M.G., Hudson, J.B. and Laimins, L.A. 1992. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257: 971–973.

    Article  CAS  PubMed  Google Scholar 

  27. Berger, J., Hauber, J., Hauber, R., Geiger, R. and Cullen, B.R. 1988. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66: 1–10.

    Article  CAS  PubMed  Google Scholar 

  28. Millán, J.L. 1986. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J. Biol. Chem. 261: 3112–3115.

    PubMed  Google Scholar 

  29. Schwarz, E., Durst, M., Demankowski, C., Lattennann, O., Zech, R., Wolfsperger, E., Suhai, S. and zur Hausen, H. 1983. DNA sequence and genome organisation of genital human papillomavirus type 6b. EMBO J. 2: 2341–2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gunning, P., Leavitt, J., Muscat, G., Ng, S.-Y. and Kedes, L. 1987. A human β-actin expression vector system directs high-level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA 84: 4831–4835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dartmann, K., Schwarz, E., Gissmann, L. and zur Hausen, H. 1986. The nudeotide sequence and genome organisation of human papillomavirus type 11. Virology 151: 124–130.

    Article  CAS  PubMed  Google Scholar 

  32. Cole, S.T. and Danos, O. 1987. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. J. Mol. Biol. 193: 599–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plumpton, M., Sharp, N., Liddicoat, L. et al. A High Capacity Assay for Inhibitors of Human Papillomavirus DNA Replication. Nat Biotechnol 13, 1210–1214 (1995). https://doi.org/10.1038/nbt1195-1210

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1195-1210

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing