Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biotechnology of Breadmaking: Unraveling and Manipulating the Multi-Protein Gluten Complex

Abstract

Breadmaking is one of humankind's oldest technologies, being established some 4,000 years ago. The ability to make leavened bread depends largely on the visco-elastic properties conferred to wheat doughs by the gluten proteins. These allow the entrapment of carbon dioxide released by the yeast, giving rise to a light porous structure. One group of gluten proteins, the high molecular weight (HMW) subunits, are largely responsible for gluten elasticity, and variation in their amount and composition is associated with differences in elasticity (and hence quality) between various types of wheat. These proteins form elastomeric polymers stabilized by inter-chain disulphide bonds, and detailed studies of their structures have led to models for die mechanism of elasticity. This work has also provided a basis for direct improvement of wheat quality by transformation with additional HMW subunit genes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Beccari, J.B. 1745. De Frumento. De Bononiensi Scientarium et Artium. Institute atque Academia Commentarii: Bologna 2: 122–127.

    Google Scholar 

  2. 2

    Corazza, G.R., Frisoni, M., Valentini, R., Bernabeo, R.A. and Gasbarrini, G. 1988. Jacopo Bartolomeo Beccari and the Discovery of Gluten, p. 11–14. In: Coeliac Disease: One Hundred Years. Kumar, P. J. and Walker-Smith, J. A. (Eds.). Gastroenterology Dept, St. Bartholomews Hospital.

    Google Scholar 

  3. 3

    Währen, M. 1962. Brot und Gebäck im Leben und Glauben der alien Ägypter. Brot und Gebäck 16: 12–20.

    Google Scholar 

  4. 4

    Sugihara, T.F., Kline, L. and McCready, L.B. 1970. Nature of the San Francisco sour dough French bread process II, microbiological aspects. Bakers Digest 44: 51–57.

    Google Scholar 

  5. 5

    Rubin, R., Levanony, H. and Galili, G. 1992. Evidence for the presence of two different types of protein bodies in wheat endosperm. Pl. Physiol. 99: 718–724.

    CAS  Article  Google Scholar 

  6. 6

    Shewry, P.R., Napier, J.A. and Tatham, A.S. 1995. Seed storage proteins: structures and biosynthesis. Pl. Cell. 7: 945–956.

    CAS  Article  Google Scholar 

  7. 7

    Venkatachalam, C.M. and Urry, D.W. 1981. Development of a linear helical conformation from its cyclic correlate, β-spiral model of the elasin polypen-tapeptide (VPGVG)n . Macromol. 14: 1225–1231.

    CAS  Article  Google Scholar 

  8. 8

    Gosline, J.M. 1980. In Mechanical Properties of Biological Materials. Symp. Soc. Exp. Biol. Cambridge University Press 34: 334.

    Google Scholar 

  9. 9

    Shewry, P.R., Miles, M.J. and Tatham, A.S. 1994. The prolamin storage proteins of wheat and related cereals. Prog. Biophys. Mol. Biol. 16: 37–59.

    Google Scholar 

  10. 10

    Shewry, P.R., Tatham, A.S., Forde, J., Kreis, M. and Miflin, B.J. 1986. The classification and nomenclature of wheat gluten proteins: a reassessment. J. Cer. Sci. 4: 97–106.

    CAS  Article  Google Scholar 

  11. 11

    Field, J.M., Shewry, P.R. and Miflin, B.J. 1983. Solubilization and characterization of wheat gluten proteins; correlations between the amount of aggregated proteins and baking quality. J. Sci. Food Agric. 34: 370–377.

    CAS  Article  Google Scholar 

  12. 12

    Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Ann. Rev. Pl. Physiol. 38: 141–153.

    CAS  Article  Google Scholar 

  13. 13

    Shewry, P.R., Halford, N.G. and Tatham, A.S. 1989. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality, p. 163–219. In: Oxford Surveys of Plant Molecular and Cell Biology. Miflin, B. J. (Ed.). Oxford University Press, Oxford.

    Google Scholar 

  14. 14

    Shewry, P.R., Halford, N.G. and Tatham, A.S. 1992. The high molecular weight subunits of wheat glutenin. J. Cereal Sci. 15: 105–120.

    CAS  Article  Google Scholar 

  15. 15

    Halford, N.G., et al. 1992. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor. Appl. Genet. 83: 373–378.

    CAS  Article  Google Scholar 

  16. 16

    Seilmeier, W., Belitz, H.-D. and Wieser, H. 1991. Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. Z. Lebensm. Unters. Forsch. 192: 124–129.

    CAS  Article  Google Scholar 

  17. 17

    Reddy, P. and Appels, R. 1993. Analysis of a genomic DNA segment carrying the wheat high-molecular-weight (HMW) glutenin Bxl7 subunit and its use as an RFLP marker. Theor. Appl. Genet. 85: 616–624.

    CAS  Article  Google Scholar 

  18. 18

    Belton, P.S., et al. 1995. FTIR and NMR studies on the hydration of a high Mr subunit of glutenin. Int. J. Biol. Macromol. 17: 74–80.

    CAS  Article  Google Scholar 

  19. 19

    Yeboah, N.A., Freedman, R.B., Popineau, Y., Shewry, P.R. and Tatham, A.S. 1994. Fluorescence studies of two γ-gliadin fractions from bread wheat. J. Cer. Sci. 19: 141–148.

    CAS  Article  Google Scholar 

  20. 20

    Vasil, V., Srivastava, V., Castillo, A.M., Fromm, M.E. and Vasil, I.K. 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11: 1553–1558.

    Google Scholar 

  21. 21

    Weeks, J.T., Anderson, O.D. and Blechl, A.E. 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Pl. Physiol. 102: 1077–1084.

    CAS  Article  Google Scholar 

  22. 22

    Barcelo, P. and Lazzeri, P.A. 1995. Transformation of tritordeum and wheat by microprojectile bombardment of immature inflorescence and embryo tissues. Chapter 9, In: Methods in Molecular Biology. Vol. XX: Plant Molecular Biology Protocols. Jones, H. (Ed.). Humana Press Inc., Totowa, NJ. In press.

    Google Scholar 

  23. 23

    Flavell, R.B., Goldsbrough, A.P., Robert, L.S., Schnick, D. and Thompson, R.D. 1989. Genetic variation in wheat HMW glutenin subunits and the molecular basis of breadmaking quality. Bio/Technology 7: 1281–1285.

    Google Scholar 

  24. 24

    Urry, D.W., Nicol, A., McPherson, D.T., Xu, J., Shewry, P.R., Harris, C.M., Parker, T.M. and Gowda, C. 1995. Properties, preparations and applications of bioelastic materials, p. 2645–2699. In: The Handbook of Biomaterials and Applications. Wise, D. L. (Ed.). Marcel Dekker Inc., New York.

    Google Scholar 

  25. 25

    Bekes, F., Anderson, O., Gras, P.W., Gupta, R.B., Tarn, A., Wrigley, C.W. and Appels, R. 1994. The contributions to mixing properties of ID HMW glutenin subunits expressed in a bacterial system, p. 97–103. In: Improvement of Cereal Quality by Genetic Engineering. Robert J. Henry and John A. Ronalds (Eds.). Plenum Press, New York and London.

    Chapter  Google Scholar 

  26. 26

    Greenfield, J.J.A., Tamas, L., Halford, N.G., Hickman, D., Ross-Murphy, S., Ingman, S., Tatham, A.S. and Shewry, P.R. 1995. Expression of barley and wheat prolamins in E. coli for biophysical studies. In: Wheat Biochemistry. Schofield, J. D. (Ed.). Royal Society of Chemistry. In press.

    Google Scholar 

  27. 27

    Vasil, V., Castillo, A.M., Fromm, M.E. and Vasil, I.K. 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10: 667–674.

    CAS  Google Scholar 

  28. 28

    Nehra, N.S., et al. 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285–297.

    CAS  Article  Google Scholar 

  29. 29

    Becker, D., Brettschneider, R. and Loerz, H. 1994. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5: 299–307.

    CAS  Article  Google Scholar 

  30. 30

    Halford, N.G., Forde, J., Shewry, P.R. and Kreis, M. 1989. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci. 62: 207–216.

    CAS  Article  Google Scholar 

  31. 31

    Lawrence, G.J., MacRitchie, F. and Wrigley, C.W. 1988. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci. 7: 109–112.

    CAS  Article  Google Scholar 

  32. 32

    Parker, M.L. 1980. Protein body inclusions in developing wheat endosperm. Ann. Bot. 46: 29–36.

    Article  Google Scholar 

  33. 33

    Parker, M.L., Mills, E.N.C. and Morgan, M.R.A. 1990. The potential of immuno-probes for locating storage proteins in wheat endosperm and bread. J. Sci. Food Agric. 52: 35–45.

    CAS  Article  Google Scholar 

  34. 34

    Miles, M.J., et al. 1991. Scanning tunnelling microscopy of a wheat gluten protein reveals details of a spiral supersecondary structure. Proc. Natl. Acad. Sci. USA 88: 68–71.

    CAS  Article  Google Scholar 

  35. 35

    Kasarda, D.D. 1994. Contrasting molecular models for a HMW-GS, p. 63–68. In: Proceedings of the International Meeting, Wheat Kernel Proteins, Molecular and Functional Aspects. S. Martino al Cimino, Viterbo (Italy).

    Google Scholar 

  36. 36

    Kasarda, D.D., King, G. and Kumosinski, T.F. 1994. Comparison of spiral structures in wheat high molecular weight glutenin subunits and elastin by molecular modeling, p. 209–220. In: Computer Molecular Modelling. Kumosinski, T. F. and Liebman, M. (Eds.). American Chemical Society, Washington DC.

    Chapter  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter R. Shewry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shewry, P., Tatham, A., Barro, F. et al. Biotechnology of Breadmaking: Unraveling and Manipulating the Multi-Protein Gluten Complex. Nat Biotechnol 13, 1185–1190 (1995). https://doi.org/10.1038/nbt1195-1185

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing