Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligonucleotide Arrays: New Concepts and Possibilities

Abstract

Advances in solid–phase oligonucleotide synthesis and hybridization techniques have led to an incipient technology based on the use of oligonucleotide arrays. The inclusion of a large number of oligonucleotide probes within a single array greatly reduces the cost of their synthesis and allows thousands of hybridizations to be carried out simultaneously. The range of potential applications of oligonucleotide arrays was expanded by the realization that nucleic acids can be sequenced by hybridizing them to all possible oligonucleotides of a given length. Additional possibilities are offered by novel types of oligonucleotide arrays that are capable of parallel sorting, isolating, and manipulating thousands, and even millions, of nucleic acid species. Fields, such as site–directed mutagenesis, protein engineering, and recombinant DNA technology, would benefit from using these arrays. Further, these approaches could enable the analysis of entire genomes by preparing ordered fragment libraries, and by sequencing complex pools of nucleic acids, in a novel approach that provides long–range sequence information by generating nested nucleic acids and then surveying the oigonucleotides contained in the nested strands. This would allow large diploid genomes to be sequenced directly in a completely automated procedure that does not require fragment cloning or chromosome mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wallace, R.B., Shaffer, J., Murphy, R.F., Bonner, J., Hirose, T. and Itakura, K. 1979. Hybridization of synthetic oligodeoxyribonucleotides to φX174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6: 3543–3557.

    Article  CAS  Google Scholar 

  2. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  Google Scholar 

  3. Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560–564.

    Article  CAS  Google Scholar 

  4. Saiki, R.K., Walsh, P.S., Levenson, C.H. and Erlich, H.A. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86: 6230–6234.

    Article  CAS  Google Scholar 

  5. Conner, B.J., Reyes, A.A., Morin, C., Itakura, K., Teplitz, R.L. and Wallace, R.B. 1983. Detection of sickle cell βs-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80: 278–282.

    Article  CAS  Google Scholar 

  6. Zhang, Y., Coyne, M.Y., Will, S.G., Levenson, C.H. and Kawasaki, E.S. 1991. Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides. Nucleic Acids Res. 19: 3929–3933.

    Article  CAS  Google Scholar 

  7. Landry, M.L. and Fong, C.K. 1985. Nucleic acid hybridization in the diagnosis of viral infections. Clin. Lab. Med. 5: 513–529.

    Article  CAS  Google Scholar 

  8. Salyers, A.A. and Kuritza, A.P. 1990. DNA probes for identification of Bacteroides species. US patent 4,977,251.

  9. Miyada, C.G. and Wallace, R.B. 1987. Oligonucleotide hybridization techniques. Meth. Enzymol. 154: 94–107.

    Article  CAS  Google Scholar 

  10. Hoheisel, J.D. and Lehrach, H. 1993. Use of reference libraries and hybridisation fingerprinting for relational genome analysis. FEBS Lett. 325: 118–122.

    Article  CAS  Google Scholar 

  11. Craig, A.G., Nizetic, D., Hoheisel, J.D., Zehetner, G. and Lehrach, H. 1990. Ordering of cosmid clones covering the herpes simplex virus type I (HSV-I) genome: a test for fingerprinting by hybridisation. Nucleic Acids Res. 18: 2653–2660.

    Article  CAS  Google Scholar 

  12. Landegren, U., Kaiser, R., Sanders, J. and Hood, L. 1988. A ligase-mediated gene detection technique. Science 241: 1077–1080.

    Article  CAS  Google Scholar 

  13. Wu, D.Y., Ugozzoli, L., Pal, B.K. and Wallace, R.B. 1989. Allele-specinc enzymatic amplification of β-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86: 2757–2760.

    Article  CAS  Google Scholar 

  14. Broude, N., Sano, T., Smith, C. and Cantor, C.R. 1994. Enhanced DNA sequencing by hybridization. Proc. Natl. Acad. Sci. USA 91: 3072–3076.

    Article  CAS  Google Scholar 

  15. Southern, E.M. 1989. Analysing polynucleotide sequences. PCT Application WO 89/10977.

  16. Fodor, S.P., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T. and Solas, D., 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773.

    Article  CAS  Google Scholar 

  17. Coassin, P.J., Rampal, J.B. and Matson, R.S. 1993. The construction of oligonucleotide arrays. International Workshop on Sequencing by Hybridization (Woodlands, TX): Report 8.

    Google Scholar 

  18. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P. and Fodor, S.P.A. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91: 5022–5026.

    Article  CAS  Google Scholar 

  19. Fodor, S.P.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P. and Adams, C.L. 1993. Multiplexed biochemical assays with biological chips. Nature 364: 555–556.

    Article  CAS  Google Scholar 

  20. Wood, W.I., Gitschier, J., Lasky, L. and Lawn, R.M. 1985. Base Composition-independent hybridization in tetramethyiammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl. Acad. Sci. USA 82: 1585–1588.

    Article  CAS  Google Scholar 

  21. Maskos, U. and Southern, E.M. 1992. Parallel analysis of oligodeoxyribonucleotide (oligonucleotide) interactions. I. Analysis of factors influencing oligonucleotide duplex formation. Nucleic Acids Res. 20: 1675–1678.

    Article  CAS  Google Scholar 

  22. Khrapko, K.R., Lysov Yu, P., Khorlin, A.A., Shik, V.V., Florentiev, V.L. and Mirzabekov, A.D. 1989. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 256: 118–122.

    Article  CAS  Google Scholar 

  23. Khrapko, K.R., Lysov Yu, P., Khorlin, A.A., Ivanov, I.B., Yershov, G.M., Vasilenko, S.K., Florentiev, V.L. and Mirzabekov, A.D. 1991. A method for DNA sequencing by hybridization with oligonucleotide matrix. DNA Sequence 1: 375–388.

    Article  CAS  Google Scholar 

  24. Maskos, U. and Southern, E.M. 1993. A novel method for the parallel analysis of multiple mutations in multiple samples. Nucleic Acids Res. 21: 2269–2270.

    Article  CAS  Google Scholar 

  25. Southern, E.M., Maskos, U. and Elder, J.K. 1992. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13: 1008–1017.

    Article  CAS  Google Scholar 

  26. Bains, W. and Smith, G. 1988. A novel method for nucleic acid sequence determination. J. Theor. Biol. 135: 303–307.

    Article  CAS  Google Scholar 

  27. Drmanac, R., Labat, I., Brukner, I. and Crkvenjakov, R. 1989. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics 4: 114–128.

    Article  CAS  Google Scholar 

  28. Lysov Yu, P., Florentiev, V.L., Khorlin, A.A., Khrapko, K.R., Shik, V.V. and Mirzabekov, A.D. 1988. Determination of the nucleotide sequence of DNA using hybridization to oligonucleotides. A new method. Dokl. Akad. Nauk SSSR 303: 1508–1511.

    Google Scholar 

  29. Strezoska, Z., Paunesku, T., Radosavljevic, D., Labat, I., Drmanac, R. and Crkvenjakov, R. 1991. DNA sequencing by hybridization: 100 bases read by a non-gel-based method. Proc. Natl. Acad. Sci. USA 88: 10089–10093.

    Article  CAS  Google Scholar 

  30. Drmanac, R., Drmanac, S., Strezoska, Z., Paunesku, T., Labat, I., Zeremski, M., Snoddy, J., Funkhouser, W.K., Koop, B., Hood, L. and Crkvernjakov, R. 1993. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science 260: 1649–1652.

    Article  CAS  Google Scholar 

  31. Pevzner, P.A., Lysov Yu, P., Khrapko, K.R., Belyavsky, A.V., Florentiev, V.L. and Mirzabekov, A.D. 1991. Improved chips for sequencing by hybridization. J. Biomol. Struct. Dyn. 9: 399–410.

    Article  CAS  Google Scholar 

  32. Bains, W. 1991. Hybridization methods for DNA sequencing. Genomics 11: 294–301.

    Article  CAS  Google Scholar 

  33. Pevzner, P.A. 1989. L-tuple DNA sequencing: computer analysis. J. Biomol. Struct. Dyn. 7: 63–73.

    CAS  PubMed  Google Scholar 

  34. Chetverin, A.B. and Kramer, F.R. 1992. Novel oligonucleotide arrays and their use for sorting, isolating, sequencing, and manipulating nucleic acids. US Patent Application 07/838,607.

  35. Drmanac, R., Petrovic, N., Glišin, V. and Crkvenjakov, R. 1986. A calculation of fragment length obtainable from human DNA with 78 restriction enzymes: an aid for cloning and mapping. Nucleic Acids Res. 14: 4691–4692.

    Article  CAS  Google Scholar 

  36. Wu, D.Y., Nozari, G., Schold, M., Conner, B.J. and Wallace, R.B. 1989. Direct analysis of single nucleotide variation in human DNA and RNA using in situ dot hybridization. DNA 8: 135–142.

    Article  CAS  Google Scholar 

  37. Arnheim, N. and Erlich, H. 1992. Polymerase chain reaction strategy. Annu. Rev Biochem. 61: 131–156.

    Article  CAS  Google Scholar 

  38. Myers, T.W. and Gelfand, D.H. 1991. Reverse transcription and DNA amplification by a Thermus thermophilus DNA Polymerase. Biochemistry 30: 7661–7666.

    Article  CAS  Google Scholar 

  39. Williams, J.G. 1981. The preparation and screening of a cDNA clone bank. p. 1–59. In: Genetic Engineering, Volume 1. Williamson, R. (Ed.). Academic Press, London.

    Google Scholar 

  40. Chetverin, A.B. and Kramer, F.R. 1993. Sequencing of pools of nucleic acids on oligonucleotide arrays. BioSystems 30: 215–231.

    Article  CAS  Google Scholar 

  41. Gyllensten, U.B. and Erlich, H.A. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 85: 7652–7656.

    Article  CAS  Google Scholar 

  42. Jeffreys, A.J. 1979. DNA sequence variants of the Gγ-, Aγ-, δ- and β-globin genes of man. Cell 18: 1–10.

    Article  CAS  Google Scholar 

  43. Rubinov, A.R., Gelfand, M.S., Ivanov, M.Y., Spirin, S.A., Razgulyaev, O.I., Nakipov, R.F. and Chetverin, A.B. 1993. Computer modeling of sequencing by nested strand hybridization. International Workshop on Sequencing by Hybridization (Woodlands, TX): Report 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetverin, A., Kramer, F. Oligonucleotide Arrays: New Concepts and Possibilities. Nat Biotechnol 12, 1093–1099 (1994). https://doi.org/10.1038/nbt1194-1093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1194-1093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing