Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transdermal protein delivery by a coadministered peptide identified via phage display

Abstract

Efficient transdermal drug delivery of large hydrophilic drugs is challenging. Here we report that the short synthetic peptide, ACSSSPSKHCG, identified by in vivo phage display, facilitated efficient transdermal protein drug delivery through intact skin. Coadministration of the peptide and insulin to the abdominal skin of diabetic rats resulted in elevated systemic levels of insulin and suppressed serum glucose levels for at least 11 h. Significant systemic bioavailability of human growth hormone was also achieved when topically coadministered with the peptide. The transdermal-enhancing activity of the peptide was sequence specific and dose dependent, did not involve direct interaction with insulin and enabled penetration of insulin into hair follicles beyond a depth of 600 μm. Time-lapse studies suggested that the peptide creates a transient opening in the skin barrier to enable macromolecular drugs to reach systemic circulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Systemic protein drug delivery mediated by TD-1.
Figure 2: Exploring TD-1's mode of action.
Figure 3: Hair follicle penetration of insulin-FITC.

Similar content being viewed by others

References

  1. Prausnitz, M.R., Mitragotri, S. & Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3, 115–124 (2004).

    Article  CAS  Google Scholar 

  2. Thomas, B.J. & Finnin, B.C. The transdermal revolution. Drug Discov. Today 9, 697–703 (2004).

    Article  CAS  Google Scholar 

  3. Scheuplein, R.J. & Blank, I.H. Permeability of the skin. Physiol. Rev. 51, 702–747 (1971).

    Article  CAS  Google Scholar 

  4. Williams, A.C. & Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 56, 603–618 (2004).

    Article  CAS  Google Scholar 

  5. Purdon, C.H., Azzi, C.G., Zhang, J., Smith, E.W. & Maibach, H.I. Penetration enhancement of transdermal delivery–current permutations and limitations. Crit. Rev. Ther. Drug Carrier Syst. 21, 97–132 (2004).

    Article  CAS  Google Scholar 

  6. Kalia, Y.N., Naik, A., Garrison, J. & Guy, R.H. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56, 619–658 (2004).

    Article  CAS  Google Scholar 

  7. Lavon, I. & Kost, J. Ultrasound and transdermal drug delivery. Drug Discov. Today 9, 670–676 (2004).

    Article  CAS  Google Scholar 

  8. Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56, 581–587 (2004).

    Article  CAS  Google Scholar 

  9. Bos, J.D. & Meinardi, M.M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9, 165–169 (2000).

    Article  CAS  Google Scholar 

  10. Karande, P., Jain, A. & Mitragotri, S. Discovery of transdermal penetration enhancers by high throughput screening. Nat. Biotechnol. 22, 192–197 (2004).

    Article  CAS  Google Scholar 

  11. Karande, P., Jain, A., Ergun, K., Kispersky, V. & Mitragotri, S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA 102, 4688–4693 (2005).

    Article  CAS  Google Scholar 

  12. Cwirla, S.E., Peters, E.A., Barrett, R.W. & Dower, W.J. Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 87, 6378–6382 (1990).

    Article  CAS  Google Scholar 

  13. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  14. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  Google Scholar 

  15. Raffii, S., Avecilla, S.D. & Jin, D.K. Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell 4, 331–333 (2003).

    Article  Google Scholar 

  16. Frenkel, D. & Solomon, B. Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA 99, 5675–5679 (2002).

    Article  CAS  Google Scholar 

  17. Duerr, D.M., White, S.J. & Schluesener, H.J. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J. Virol. Methods 116, 177–180 (2004).

    Article  CAS  Google Scholar 

  18. Guy, R.H. & Hadgraft, J . Transdermal Drug Delivery. (Marcel Dekker, New York, 2003).

    Google Scholar 

  19. Uversky, V.N. et al. Prediction of the Association State of Insulin Using Spectral Parameters. J. Pharm. Sci. 92, 847–858 (2003).

    Article  CAS  Google Scholar 

  20. Montagna, W. The Structure and Function of Skin. (Academic Press, New York, 1956).

    Google Scholar 

  21. Grams, Y.Y. & Bouwstra, J.A. Penetration and distribution of three lipophilic probes in vitro in human skin focusing on the hair follicle. J. Control. Release 83, 253–262 (2002).

    Article  CAS  Google Scholar 

  22. Rolland, A., Wagner, N., Chatelus, A., Shroot, B. & Schaefer, H. Site- specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm. Res. 10, 1738–1744 (1993).

    Article  CAS  Google Scholar 

  23. Li, L. & Hoffman, R.M. The feasibility of targeted selective gene therapy of the hair follicle. Nat. Med. 1, 705–706 (1995).

    Article  Google Scholar 

  24. Lauer, A.C., Lieb, L.M., Ramachandran, C., Flynn, G.L. & Weiner, N.D. Transfollicular drug delivery. Pharm. Res. 12, 179–186 (1995).

    Article  CAS  Google Scholar 

  25. Agarwal, R., Katare, O.P. & Vyas, S.P. The pilosebaceous unit: a pivotal route for topical drug delivery. Methods Find. Exp. Clin. Pharmacol. 22, 129–133 (2000).

    Article  CAS  Google Scholar 

  26. Meidan, V.M., Docker, M., Walmsley, A.D. & Irvin, W.J. Low intensity ultrasound as a probe to elucidate the relative follicular contribution to total transdermal absorption. Pharm. Res. 15, 85–92 (1998).

    Article  CAS  Google Scholar 

  27. Joliot, A. & Prochiantz, A. Transduction peptides: from technology to physiology. Nat. Cell Biol. 6, 189–196 (2004).

    Article  CAS  Google Scholar 

  28. Rothbard, J.B. et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6, 1253–1257 (2000).

    Article  CAS  Google Scholar 

  29. Schutze-Redelmeier, M.-P.M., Kong, S., Bally, M.B. & Dutz, J.P. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine 22, 1985–1991 (2004).

    Article  CAS  Google Scholar 

  30. Lopes, L.B. et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm. Res. 22, 750–757 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Yong Chen for help on sequence analysis. This work was supported by the One Hundred Talent Project and Nanomedicine Research Project (kjcx2-sw-h12-01) of the Chinese Academy of Sciences, Anhui Talent Fund (2004Z023) and National Natural Science Foundation of China (30470871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Ping Wen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Inhibition of transdermal activity of PH-1 by TD-1 (PDF 67 kb)

Supplementary Fig. 2

Insulin dose response (PDF 71 kb)

Supplementary Fig. 3

Assessment of direct interaction between TD-1 and insulin (PDF 32 kb)

Supplementary Fig. 4

Time course of hair follicle penetration of insulin-FITC (PDF 142 kb)

Supplementary Fig. 5

Hair follicle penetration of TD-1 (PDF 125 kb)

Supplementary Table 1

DLS measurement (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Shen, Y., Guo, X. et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 24, 455–460 (2006). https://doi.org/10.1038/nbt1193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing