Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement

Abstract

Tomato represents an important source of fiber and nutrients in the human diet and is a central model for the study of fruit biology. To identify components of fruit metabolic composition, here we have phenotyped tomato introgression lines (ILs) containing chromosome segments of a wild species in the genetic background of a cultivated variety. Using this high-diversity population, we identify 889 quantitative fruit metabolic loci and 326 loci that modify yield-associated traits. The mapping analysis indicates that at least 50% of the metabolic loci are associated with quantitative trait loci (QTLs) that modify whole-plant yield-associated traits. We generate a cartographic network based on correlation analysis that reveals whole-plant phenotype associated and independent metabolic associations, including links with metabolites of nutritional and organoleptic importance. The results of our genomic survey illustrate the power of genome-wide metabolic profiling and detailed morphological analysis for uncovering traits with potential for crop breeding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overlay heat map of the metabolite profiles and other traits of the ILs in comparison to the parental control (S. lycopersicum).
Figure 2: Cartographic representation of the combined metabolic and morphological network of the tomato.
Figure 3: Morphologically associated and independent metabolites.
Figure 4: Fine evaluation of genomic regions containing morphologically associated and independent metabolite QTLs.

Similar content being viewed by others

References

  1. Giovannoni, J. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. 52, 725–749 (2001).

    Article  CAS  Google Scholar 

  2. Tanksley, S.D. & McCouch, S.R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2, 983–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Fulton, T.M. et al. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127, 163–177 (2002).

    Article  CAS  Google Scholar 

  5. Schauer, N., Zamir, D. & Fernie, A.R. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Causse, M. et al. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53, 2089–2098 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Rousseaux, M.C. et al. QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111, 1396–1408 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y.-S. et al. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1, 195–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Moose, S.P., Dudley, J.W. & Rocheford, T.R. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9, 358–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Fernie, A.R. & Willmitzer, L. Carbohydrate metabolism. in The Handbook of Plant Biotechnology (eds. Christou, P. & Klee, H.K.) (Wiley, Chichester, UK, 2004).

    Google Scholar 

  11. Kliebenstein, D.J. et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kissebah, A.H. et al. Novel genetic pathway for the abdominal obesity metabolic syndrome (AMOS): preliminary analysis from the TOPS/MRC-OB genes project. Obes. Res. 8 (suppl.), 4S–4S (2000).

    Google Scholar 

  13. Montooth, K.L., Clark, A.G. & Marden, J.H. Physiological genetics of flight performance in Drosophila melanogaster. Am. Zool. 40, 1135–1136 (2000).

    Google Scholar 

  14. Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Fernie, A.R., Trethewey, R.N., Krotzky, A.J. & Willmitzer, L. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Guimera, R. & Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibon, Y. et al. A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16, 3304–3325 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oksman-Caldentey, K.M. & Saito, K. Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr. Opin. Biotechnol. 16, 174–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Dudley, N.R. & Goldstein, B. RNA interference in Caenorhabditis elegans. Methods Mol. Biol. 309, 29–38 (2005).

    CAS  PubMed  Google Scholar 

  21. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark, D.M., Timmerman, K.P., Barry, G.F., Preiss, J. & Kishore, G.M. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, J.K. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Raamsdonk, L.M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Causse, M. et al. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 55, 1671–1685 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Gur, A., Semel, Y., Cahaner, A. & Zamir, D. Real time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci. 9, 107–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Galili, G. & Hofgen, R. Metabolic engineering of amino acids and storage proteins in plants. Metab. Eng. 4, 3–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Roessner-Tunali, U. et al. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol. 133, 84–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mueller, L.A. et al. The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genom. 6, 153–158 (2005).

    Article  CAS  Google Scholar 

  31. Pnueli, L. et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125, 1979–1989 (1998).

    CAS  PubMed  Google Scholar 

  32. Wigge, P.A. et al. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, T., Bohlenius, H., Eriksson, S., Parcy, F. & Nilsson, O. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309, 1694–1696 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Fridman, E. et al. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol. Genet. Genomics 266, 821–826 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Emery, G.C. & Munger, H.M. Effects of inherited differences in growth habit on fruit size and soluble solids in tomato. J. Am. Soc. Hortic. Sci. 95, 51–56 (1970).

    Google Scholar 

  36. Brindle, J.T. et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8, 1439–1444 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Grandillo, S., Zamir, D. & Tanksley, S.D. Genetic improvement of processing tomatoes: a 20 years perspective. Euphytica 110, 85–97 (1999).

    Article  Google Scholar 

  38. Davuluri, G.R. et al. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 40, 344–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bovy, A. et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14, 2509–2526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koyama, H. et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 41, 1030–1037 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Weckwerth, W., Loureiro, M.E., Wenzel, K. & Fiehn, O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. USA 101, 7809–7814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alba, R. et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954–2965 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lumba, S. & McCourt, P. Preventing leaf identity theft with hormones. Curr. Opin. Plant Biol. 8, 501–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97, 4718–4723 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fridman, E., Carrari, F., Liu, Y.S., Fernie, A.R. & Zamir, D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Baxter, C.J. et al. Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol. 46, 425–437 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Stitt, M. & Fernie, A.R. From measurements of metabolites to metabolomics: an 'on the fly' perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol. 14, 136–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. McCouch, S. Diversifying selection in plant breeding. PLoS Biol. 2, e347 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the German-Israeli Cooperation Project (DIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R Fernie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Heat maps of the metabolite profiles of the introgession lines from the individual data sets of A) 2001 and B) 2003. (PDF 645 kb)

Supplementary Fig. 2

Performance of module identification. (PDF 936 kb)

Supplementary Fig. 3

HI and BX levels in three different genotypes of the recessive self-pruning (SP) allele of tomato plants. (PDF 9 kb)

Supplementary Table 1

Metabolite QTL table (PDF 100 kb)

Supplementary Table 2

Yield associated QTL table. (PDF 42 kb)

Supplementary Table 3

Association analysis between pairs of traits. (PDF 3463 kb)

Supplementary Table 4

Dependence of metabolite QTLs in morphology traits. (PDF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauer, N., Semel, Y., Roessner, U. et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24, 447–454 (2006). https://doi.org/10.1038/nbt1192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing