Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Non–Hydrolytic Disruption of Cellulose Fibres by the Binding Domain of a Bacterial Cellulase

Abstract

We have shown that the isolated cellulose binding domain of endoglucanase A (GenA) from the bacterium Cellulomonas fimi disrupts the structure of cellulose fibres and releases small particles but has no detectable hydrolytic activity. In contrast, the isolated catalytic domain of this enzyme does not disrupt the fibril structure but polishes the surface of the fibre concomitant with the release of reducing sugars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ong, E., Greenwood, J.M., Gilkes, N.R., Kilburn, D.G., Miller, R.C., Jr. and Warren, R.A.J. 1989. The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol. 7: 239–243.

    Article  CAS  Google Scholar 

  2. Pilz, I., Schwarz, E., Kilburn, D.G., Gilkes, N.R., Miller, R.C. Jr. and Warren, R.A.J. 1990. The tertiary structure of a bacterial cellulase determined by small-angle X-ray scattering analysis. Biochem. J. 271: 277–280.

    Article  CAS  Google Scholar 

  3. Warren, R.A.J., Beck, C.R., Gilkes, N.R., Kilburn, D.G., Langsford, M.L., Miller, R.C., Jr., O'Neill, G.P., Scheufens, M. and Wong, W.K.R. 1987. Sequence conservation and region shuffling in an endoglucanase and an exoglucanase from Cellulomonas fimi. Proteins. 1: 335–341.

    Article  Google Scholar 

  4. Gilkes, N.R., Miller, R.C. Jr., Warren, R.A.J. and Kilburn, D.G. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401–10407.

    CAS  PubMed  Google Scholar 

  5. Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C. Jr. and Warren, R.A.J. 1991. Domains in microbial β-l,4-glycanases: sequence conservation, function and enzyme families. Microbiol. Rev. 55: 305–315.

    Google Scholar 

  6. Klyosov, A.A. 1990. Trends in biochemistry and enzymology of cellulose degradation. Biochem. 29: 10577–10589.

    Article  CAS  Google Scholar 

  7. Cheek, L. and Roussel, L. 1989. Mercerization of ramie: comparisons with flax and cotton. Part I: effects on physical, mechanical, and accessibility characteristics. Textile Res. J. 59: 478–483.

    Article  CAS  Google Scholar 

  8. Reese, E.T., Sui, R.G.H. and Levinson, H.S. 1950. Biological degradation of soluble cellulose derivatives. J. Bacteriol. 59: 485–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood, T.M. 1989. Mechanisms of cellulose degradation by enzymes from aerobic and anaerobic fungi, p. 12–35. In: Enzyme Systems for Lignocellulose Degradation. Coughlan M. P. (Ed.). Elsevier Applied Science, New York.

    Google Scholar 

  10. Nevell, T.P. and Zeonian, S.H. 1985. Cellulose chemistry fundamentals, p. 15–29. In: Cellulose Chemistry and its Applications. Nevell, T. P. and Zeonian, S. H. (Eds.). John Wiley & Sons, New York.

    Google Scholar 

  11. Kolpak, F.J. and Blackwell, J. 1975. Deformation of cotton and bacterial cellulose microfibrils. Textile Res. J. 45: 568–572.

    Article  Google Scholar 

  12. Blackwell, J. 1982. The macromolecular organization of cellulose and chitin, p. 403–428. In: Cellulose and Other Natural Polymer Systems. Biogenesis, Structure and Degradation. Brown, R. M. Jr. (Ed.). Plenum Press, New York.

    Chapter  Google Scholar 

  13. Wood, T.M. 1991. Fungal cellulases, 491–533. In: Biosynthesis and Biodegradation of Cellulose. Haigler, C. H. and Weimer, P. J. (Eds.). Marcel Dekker, New York.

    Google Scholar 

  14. Scopes, R.K. 1974. Measurement of protein concentration by spectrophotometry at 205 nm. Anal. Biochem. 59: 277–282.

    Article  CAS  Google Scholar 

  15. Hudson, L. and Hay, F.C. 1976. Practical Immunology. Blackwell Scientific Publications, Oxford UK.

    Google Scholar 

  16. Wood, T.M. 1988. Preparation of crystalline, amorphous and dyed cellulose substrates. Methods in Enzymol. 160: 19–21.

    Article  CAS  Google Scholar 

  17. Halliwell, G. 1965. Hydrolysis of fibrous cotton and reprecipitated cellulose by cellulolytic enzymes from soil micro-organisms. Biochem. J. 95: 270–281.

    Article  CAS  Google Scholar 

  18. White, C.A. and Kennedy, J.F., 1986. Carbohydrate Analysis: A Practical Approach, p. 38. Chaplin, M. R. and Kennedy, J. F. (Eds.). IRL Press, Oxford, UK.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Din, N., Gilkes, N., Tekant, B. et al. Non–Hydrolytic Disruption of Cellulose Fibres by the Binding Domain of a Bacterial Cellulase. Nat Biotechnol 9, 1096–1099 (1991). https://doi.org/10.1038/nbt1191-1096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1191-1096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing