Antibody Formation Against Heat-Induced Gene Products Expressed in Animals

Abstract

Eukaryotic host cells co-transfected with a human growth hormone gene (hGH) under the control of the promoter of the human 70,000 Mr heat shock protein (hsp70) gene, and with the human harvey ras oncogen, were expanded as tumours after inoculation into selected warmblooded animals. Upon stressing the animals, employing controlled whole body heat, gene expression occurs, and hGH protein can be detected in the blood stream of the animals. In addition, in response to the secretion of the newly synthesized protein after induction, non-genetically immunodeficient animals produce antibodies over a period of four weeks, able to compete monoclonal antibodies, or to immunoprecititate the hGH produced by the parental cells. This approach represents a simple method for the direct production in vivo of a given gene product, as well as polyclonal antibodies directed against it. Moreover, it offers a general method of primary immunization with an engineered gene product.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia 18:571–573.

    CAS  Article  Google Scholar 

  2. 2

    Schlesinger, M., Ashburner, M., and Tissières, A. 1982. Heat Shock from Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  3. 3

    Voellmy, R. 1984. The heat shock genes: A family of highly conserved genes with a superbly complex expression. Bioessay 1:213–217.

    CAS  Article  Google Scholar 

  4. 4

    Bardwell, J.C. and Craig, E.A. 1984. Major heat shock genes of Drosophila and Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. U.S.A. 81:848–852.

  5. 5

    Voellmy, R., Ahmed, A., Schiller, P., Bromley, P. and Rungger, D. 1985. Isolation and functional analysis of a human 70,000-dalton heat shock protein gene segment. Proc. Natl. Acad. Sci. U.S.A. 82:4949–4953.

    CAS  Article  Google Scholar 

  6. 6

    Nover, L. 1987. Expression of heat shock genes in homologous and heterologous systems. Enzyme Microb. Technol. 9:129–144.

    Article  Google Scholar 

  7. 7

    Dreano, M., Fouillet, X., Brochot, J., Vallet, J.-M., Michel, M.-L., Rungger, D., and Bromley, P. 1986. High-level, heat-regulated synthesis of proteins in eukaryotic cells. Gene 49:1–8.

    CAS  Article  Google Scholar 

  8. 8

    Dreano, M., Brochot, J., Myers, A., Cheng-Meyer, C., Rungger, D., Voellmy, R., and Bromley, P. 1987. Heat-regulated expression of the hepatitis B virus surface antigen in the human Wish cell line. Virus Res. 8:43–59.

    CAS  Article  Google Scholar 

  9. 9

    Tabin, C.J., Bradley, S.M., Bargmann, C.I., Weinberg, R.A., Papageorge, A.G., Scolnick, E.M., Dhar, R., Lowry, D.R., and Chang, E.H. 1982. Mechanism of activation of a human oncogene. Nature 300:143–149.

    CAS  Article  Google Scholar 

  10. 10

    Dreano, M., Fischbach, M., Moutandou, F., Salina, C., Padieu, P. and Bromley, P. Production of secretable proteins using the passage in vivo as tumours of cells carrying heat-inducible expression constructs. 1988. Bio/Technology 6:953–958.

    CAS  Google Scholar 

  11. 11

    Bjorck, L. and Kronvall, G. 1984. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J. Immunol. 133:969–974.

    CAS  PubMed  Google Scholar 

  12. 12

    Sugimoto, K. 1980. Procedure for the production of human insulin. Japanese Patent Application No. 104726.

  13. 13

    Oliff, A., Defeo-Jones, D., Boyer, M., Martinez, D., Kiefer, D., Vuocolo, G., Wolfe, A., and Socher, S.H. 1987. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563.

    CAS  Article  Google Scholar 

  14. 14

    Seden, R.F., Skoskiewicz, M.J., Howie, K.B., Russell, P.S., and Goodman, H.M. 1987. Implantation of genetically engineered fibro-blasts into mice: Implications for gene therapy. Science 236:714–718.

    Article  Google Scholar 

  15. 15

    Wagner, E.F., Covarrubias, L., Stewart, T.A., and Mintz, B. 1983. Prenatal lethalities in mice homozygous for human growth hormone gene sequences integrated in the germ line. Cell 35:647–655.

    CAS  Article  Google Scholar 

  16. 16

    Hammer, R.E., Palmiter, R.D. and Brinster, R.L. 1984. Partial correction of murine hereditary growth disorder by germline incorpo ration of a new gene. Nature 311:65–67.

    CAS  Article  Google Scholar 

  17. 17

    Delpeyroux, F., Chenciner, N., Lim, A., Blondel, B., Crainic, R., vander Werf, S., and Streeck, R.E. 1986. Poliovirus neutralization epitope expressed on hybrid hepatitis B surface antigen particles. Science 233:472–475.

    CAS  Article  Google Scholar 

  18. 18

    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dreano, M., Marq, J. & Bromley, P. Antibody Formation Against Heat-Induced Gene Products Expressed in Animals. Nat Biotechnol 6, 1340–1343 (1988). https://doi.org/10.1038/nbt1188-1340

Download citation

Further reading

  • Gene expression following transfection of fish cells

    • Monique Bearzotti
    • , Elisabeth Perrot
    • , Christine Michard-Vanhee
    • , Geneviève Jolivet
    • , Joé Attal
    • , Marie-Claire Theron
    • , Claudine Puissant
    • , Michel Dreano
    • , J.J. Kopchick
    • , Richard Powell
    • , Franck Gannon
    • , Louis-Marie Houdebine
    •  & Daniel Chourrout

    Journal of Biotechnology (1992)