Genetic Construction of Lactose-Utilizing Strains of Pseudomonas Aeruginosa and Their Application in Biosurfactant Production

Abstract

We inserted the E. coli lacZY genes into the chromosomes of Pseudomonas aeruginosa strains PAO-1 and PG-201 using a bicomponent transposition system, and obtained transconjugant strains with one set of lacZY genes integrated into the chromosomes at unique locations. The strains were positive in the o-nitrophenylgalacto-side (ONPG) test and produced E. coli β-galactosidase-related proteins in Western blots. The transconjugants grew well in lactose-based media (minimal medium and whey) albeit with reduced initial rates as compared to growth in glucose-based minimal media. Pseudomonas rhamnolipids were produced during stationary growth in lactose-based minimal media and whey, showing that waste products can be effectively used for important bio-technological processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hisatsuka, K., Nakahara, T., Sano, N., and Yamada, K. 1971. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35:686–692.

    Article  Google Scholar 

  2. 2

    Itoh, S., and Suzuki, T. 1972. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agr. Biol. Chem. 36:2233–2235.

    CAS  Article  Google Scholar 

  3. 3

    Itoh, S., Honda, H., Tomita, F., and Suzuki, T. 1971. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin. The Journal of Antibiotics 24:855–859.

    CAS  Article  Google Scholar 

  4. 4

    Edwards, J. and Hayashi, J. 1965. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys. 111:415–421.

    CAS  Article  Google Scholar 

  5. 5

    Kosaric, N., Gray, N.C.C., and Cairns, W.L. 1983. Microbial emulsifiers and de-emulsifiers, p. 575–592. In: Biotechnology, vol. 3. Rehm, H. J. and Reed, G., (eds.) Verlag Chemie, Weinheim.

    Google Scholar 

  6. 6

    Finnerty, W.R., and Singer, M.E. 1983. Microbial enhancement of oil recovery. Bio/Technology 1:47–54.

    Google Scholar 

  7. 7

    Moulin, G. and Galzy, P. 1984. Whey, a potential substrate for biotechnology, p. 347–374. In: Biotechnology and Genetic Engineering Reviews 1. Russell, G. E. (ed.).

    Google Scholar 

  8. 8

    Drahos, D.J., Hemming, B.C., and McPherson, S. 1986. Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Bio/Technology 4:439–444.

    CAS  Google Scholar 

  9. 9

    Baumberg, S., Cornelis, G., Panagiotakopoulos, and Roberts, M. 1980. Expression of the lactose transposon Tn951 in Escherichia coli, Proteus and Pseudomonas. Journal of General Microbiology 119:257–262.

    CAS  PubMed  Google Scholar 

  10. 10

    Barry, G.F. 1986. Permanent insertion of foreign genes into the chromosome of soil bacteria. Bio/Technology 4:446–449.

    CAS  Google Scholar 

  11. 11

    Holloway, B.W. 1969. Genetics of pseudomonads. Bacteriol. Rev. 33:419–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Guerra Santos, L.H., Käppeli, O., and Fiechter, A. 1986. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Applied Microbiology and Biotechnology 24:443–448.

    CAS  Article  Google Scholar 

  13. 13

    Ubben, D. and Schmitt, R. 1986. Tnl721 derivatives for transposon mutagenesis, restriction mapping and nucleotide sequence analysis. Gene 41:145–152.

    CAS  Article  Google Scholar 

  14. 14

    Gray, M.R., Colot, H.V., Guarente, L., and Rosbash, M. 1982. Open reading frame cloning: identification, cloning, and expression of open reading frame DNA. Proc. Natl. Acad. Sci. USA 79:6598–6602.

    CAS  Article  Google Scholar 

  15. 15

    Lichtenstein, C., and Brenner, S. 1981. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol. Gen. Genet. 183:380–387.

    CAS  Article  Google Scholar 

  16. 16

    Boyer, H.W., and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459–472.

    CAS  Article  Google Scholar 

  17. 17

    Cornelis, G., Ghosal, D., and Saedler, H. 1978. Tn951: a new transposon carrying a lactose operon. Mol. Gen. Genet. 160:215–224.

    CAS  Article  Google Scholar 

  18. 18

    Walsh, P.M., Haas, M.J., and Somkuti, G.A. 1984. Genetic construction of lactose-utilizing Xanthomonas campestris. Applied and Environ mental Microbiology 47:253–257.

    CAS  Google Scholar 

  19. 19

    Meselson, M. and Yuan, R. 1968. DNA restriction enzyme from E. coli. Nature 217:1110–1114.

    CAS  Article  Google Scholar 

  20. 20

    Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene 33:103–119.

    CAS  Article  Google Scholar 

  21. 21

    Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular cloning-A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  22. 22

    Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218.

    CAS  Article  Google Scholar 

  23. 23

    Feinberg, P., and Vogelstein, B. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137:266–267.

    CAS  Article  Google Scholar 

  24. 24

    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685.

    CAS  Article  Google Scholar 

  25. 25

    Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    CAS  Article  Google Scholar 

  26. 26

    Johnson, D.A., Gautsch, J.W., Sportsman, J.R., and Elder, J.H. 1984. Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal. Tech. 1:3–8.

    CAS  Article  Google Scholar 

  27. 27

    Hawkes, R., Niday, E., and Gordon, J. 1982. A dot-immunobinding assay for monoclonal and other antibodies. Analytical Biochemistry 119:142–147.

    CAS  Article  Google Scholar 

  28. 28

    Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  29. 29

    Christie, W.W. 1982. Lipid Analysis. 2nd Edition, Pereamon Press, p. 119–120.

    Google Scholar 

  30. 30

    Beutler, H.O. 1984. p. 104–112. In: Methods of Enzymatic Analysis, 3rd ed., Vol. 6. Bergmeyer, H. U. (ed.) Verlag Chemie, Weinheim, Deerfield Beach/Florida, Basel.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koch, A., Reiser, J., Käppeli, O. et al. Genetic Construction of Lactose-Utilizing Strains of Pseudomonas Aeruginosa and Their Application in Biosurfactant Production. Nat Biotechnol 6, 1335–1339 (1988). https://doi.org/10.1038/nbt1188-1335

Download citation

Further reading