Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-illuminating quantum dot conjugates for in vivo imaging

Abstract

Fluorescent semiconductor quantum dots hold great potential for molecular imaging in vivo1,2,3,4,5. However, the utility of existing quantum dots for in vivo imaging is limited because they require excitation from external illumination sources to fluoresce, which results in a strong autofluorescence background and a paucity of excitation light at nonsuperficial locations. Here we present quantum dot conjugates that luminesce by bioluminescence resonance energy transfer in the absence of external excitation. The conjugates are prepared by coupling carboxylate-presenting quantum dots to a mutant of the bioluminescent protein Renilla reniformis luciferase. We show that the conjugates emit long-wavelength (from red to near-infrared) bioluminescent light in cells and in animals, even in deep tissues, and are suitable for multiplexed in vivo imaging. Compared with existing quantum dots, self-illuminating quantum dot conjugates have greatly enhanced sensitivity in small animal imaging, with an in vivo signal-to-background ratio of > 103 for 5 pmol of conjugate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and spectroscopic characterization of bioluminescent quantum dot conjugates based on BRET.
Figure 2: Bioluminescence and fluorescence imaging of QD655-Luc8 and Luc8 injected subcutaneously (I and II) and intramuscularly (III and IV) at indicated sites in a mouse (I and III, QD655-Luc8, 5 pmol; II and IV, Luc8, 30 pmol).
Figure 3: Multiplexed imaging of conjugates QD605-Luc8, QD655-Luc8, QD705-Luc8 and QD800-Luc8 in vitro and in mice.
Figure 4: Imaging C6 glioma cells labeled with QD655-Luc8-R9 in vitro and in mice.

Similar content being viewed by others

References

  1. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  2. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  3. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  4. Jaiswal, J.K. & Simon, S.M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14, 497–504 (2004).

    Article  CAS  Google Scholar 

  5. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  6. Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  7. Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  8. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  9. Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  10. Niemeyer, C.M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Edn. Engl. 40, 4128–4158 (2001).

    Article  CAS  Google Scholar 

  11. Pinaud, F., King, D., Moore, H-P. & Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004).

    Article  CAS  Google Scholar 

  12. Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281–286 (2001).

    Article  CAS  Google Scholar 

  13. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  14. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  15. Troy, T., Jekic-McMullen, D., Sambucetti, L. & Rice, B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol. Imaging 3, 9–23 (2004).

    Article  CAS  Google Scholar 

  16. Tuchin, V. Tissue optics (SPIE Press, Bellingham, Washington, 2000).

  17. Ward, W.W. & Cormier, M.J. Energy transfer via protein-protein interaction in Renilla bioluminescence. Photochem. Photobiol. 27, 389–396 (1978).

    Article  CAS  Google Scholar 

  18. Wilson, T. & Hastings, J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230 (1998).

    Article  CAS  Google Scholar 

  19. De, A. & Gambhir, S.S. Non-invasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J. 19, 2017–2019 (2005).

    Article  CAS  Google Scholar 

  20. Medintz, I.L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630–638 (2003).

    Article  CAS  Google Scholar 

  21. Medintz, I.L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. USA 101, 9612–9617 (2004).

    Article  CAS  Google Scholar 

  22. Clapp, A.R., Medintz, I.L., Fisher, B.R., Anderson, G.P. & Mattoussi, H. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J. Am. Chem. Soc. 127, 1242–1250 (2005).

    Article  CAS  Google Scholar 

  23. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  Google Scholar 

  24. Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  25. Contag, P.R., Olomu, I.N., Stevenson, D.K. & Contag, C.H. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).

    Article  CAS  Google Scholar 

  26. Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Burroughs Wellcome Fund (to J.R.), the Korea Research Foundation Grant M07-2004-000-10234-0 (to M.-K.S.), a Stanford Bio-X Graduate Fellowship (to A.M.L.), the National Institutes of Health grants 5R01CA82214-7 and P50 CA114747 (to S.S.G.), the National Cancer Institute Centers of Cancer Nanotechnology Excellence (CCNE) U54, and the National Cancer Institute's Small Animal Imaging Resource Program (SAIRP R24CA92862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghong Rao.

Ethics declarations

Competing interests

Stanford University is seeking to file a patent application covering part of the information contained in the paper.

Supplementary information

Supplementary Fig. 1

Dependence of the BRET efficiency on the distance between QDs and Luc8's. (PDF 60 kb)

Supplementary Fig. 2

Effect of the number of immobilized Luc8 on the BRET efficiency. (PDF 89 kb)

Supplementary Fig. 3

Bioluminescence and fluorescence imaging of QD655-Luc8 and Luc8 in a living mouse (BRET filter: 650–660 nm). (PDF 45 kb)

Supplementary Table 1

The BRET ratio of QD-Luc8 conjugates. (PDF 12 kb)

Supplementary Notes (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, MK., Xu, C., Loening, A. et al. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24, 339–343 (2006). https://doi.org/10.1038/nbt1188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing