Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arabidopsis Thaliana: A Model System for Plant Molecular Biology

Abstract

Arabidopsis thaliana is a small member of the mustard family, botanical information on which dates back to the 16th century. It has many advantages as a model system for plant molecular genetics, such as a short life cycle, small size, small genome size, and well developed classical genetics. Arabidopsis thus provides an alternative system to the commonly used crop plants for studies in the molecular genetics of plant physiology and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Flavell, R. 1980. The molecular characterization and organization of plant chromosomal DNA sequences. Ann. Rev. Plant Physiol. 31: 569–596.

    Article  CAS  Google Scholar 

  2. Bevan, M.W. and Chilton, M.-D. 1982. T-DNA of the Agrobacterium Ti- and Ri- plasmids. Ann. Rev. Genet. 16: 357–384.

    Article  CAS  Google Scholar 

  3. Koncz, C., Kreuzaler, F., Kalman, Zs., and Schell, J. 1984. A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and α-actin in plant tumors. EMBO 3: 1029–1037.

    Article  CAS  Google Scholar 

  4. Müller, A. 1961. Zur charakterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh. Kulturpflanze 9: 364–393.

    Article  Google Scholar 

  5. Meinke, D.W. and Sussex, I.M. 1979. Embryo-lethal mutants of Arabidopsis thaliana: A model system for genetic analysis of plant embryo development. Dev. Biol. 72: 50–61.

    Article  CAS  Google Scholar 

  6. Laibach, F. 1907. Zur Frage nach der Individualität der Chromsomen im Pflanzenreich. Beih. Bot. Cbl. 1 Abt. 22: 191–210.

    Google Scholar 

  7. Laibach, F. 1943. Arabidopsis thaliana (L.) Heynh. als object für genetische und entwicklungsphysiologische untersuchungen, Bot. Archiv. 44: 439–455.

    Google Scholar 

  8. Reinholz, E. 1947. Auslösung von Röntgenmutationen bei Arabidopsis thaliana (L.) Heynh. und ihre Bedeutung für die Pflanzenzüchtung und Evolutionstheorie. Field Information Agency Technical Report 1006: 1–70.

    Google Scholar 

  9. Koornneef, M., Dellaert, L.W.M., and van der Veen, J.H. 1982. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mut. Res. 93: 109–123.

    Article  CAS  Google Scholar 

  10. Estelle, M.A. and Somerville, C.R. 1986. The mutants of Arabidopsis. Trends in Genetics 2: 89–93.

    Article  Google Scholar 

  11. Li, S.L. and Rédei, G.P. 1969. Estimation of mutation rate in autogamous diploids. Radiat. Bot. 9: 125–131.

    Article  Google Scholar 

  12. Koornneef, M., van Eden, J., Hanhart, C.J., Stam, P., Braaksma, F.J., and Feenstra, W.J. 1983. Linkage map of Arabidopsis thaliana. J. Hered. 74: 265–272.

    Article  Google Scholar 

  13. Koornneef, M. 1987. Genetic Map of Arabidopsis thaliana. In: Genetic Maps. Stephen J. O'Brian (ed.). Cold Spring Harbor Laboratory. In press.

    Google Scholar 

  14. Koornneef, M. and van der Veen, J.H. 1983. The trisomics of Arabidopsis and the location of linkage groups. Genetica 61: 41–46.

    Article  Google Scholar 

  15. Meinke, D.W. and Sussex, I.M. 1979. Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Dev. Biol. 72: 62–72.

    Article  CAS  Google Scholar 

  16. Meyerowitz, E.M. and Pruitt, R.E. 1984. Genetic variations of Arabidopsis thaliana. Cal. Inst. of Tech.

  17. Braaksma, F.J. and Feenstra, W.J. 1982. Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana. Theor. Appl. Genet. 64: 83–90.

    Article  CAS  Google Scholar 

  18. Dolferus, R. and Jacobs, M. 1987. Characterization of the Arabidopsis Adh gene and analysis of EMS induced Adh-null mutants. Abstract ♯108, 3rd International meeting on Arabidopsis. Michigan State University.

  19. Haughn, G.W. and Somerville, C.R. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol. Gen. Genet. 210: 430–434.

    Article  Google Scholar 

  20. Chaleff, R.S. and Mauvais, C.J. 1984. Acetolacetate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224: 1443–1445.

    Article  CAS  Google Scholar 

  21. Leutwiler, L.S., Hough-Evans, B.R., and Meyerowitz, E.M. 1984. The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194: 15–23.

    Article  CAS  Google Scholar 

  22. Sparrow, A.H., Price, H.J., and Underbrink, A.G. 1972. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp. Biol. 23: 451–494.

    CAS  PubMed  Google Scholar 

  23. Bennett, M.D. and Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Proc. R. Soc. London Ser. B 274: 227–274.

    CAS  Google Scholar 

  24. Goldberg, R.B., Hoschek, G., and Kamalay, J.C. 1978. Sequence complexity of nuclear and polysomal RNA in leaves of tobacco plant. Cell 14: 123–131.

    Article  CAS  Google Scholar 

  25. Murray, M.G., Palmer, J.D., Cuellar, R.E., and Thompson, W.F. 1979. Deoxyribonucleic acid sequence organization in the mung bean genome. Biochemistry 18: 5259–5266.

    Article  CAS  Google Scholar 

  26. Pruitt, R.E. and Meyerowitz, E.M. 1986. Characterization of the genome of Arabidopsis thaliana. J. Mol. Biol. 187: 169–183.

    Article  CAS  Google Scholar 

  27. Chang, C. and Meyerowitz, E.M. 1986. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc. Natl. Acad. Sci. U.S.A. 83: 1408–1412.

    Article  CAS  Google Scholar 

  28. Dolferus, R. and Jacobs, M. 1984. Polymorphism of alcohol dehydrogenase in Arabidopsis thaliana (L) Heynh.: Genetical and biochemical characterization. Biochem. Genet. 22: 817–838.

    Article  CAS  Google Scholar 

  29. Leutwiler, L.S., Meyerowitz, E.M., and Tobin, E.M. 1986. Structure and expression of three light-harvesting chlorophyll a/b binding protein genes in Arabidopsis thaliana. Nucl. Acid Res. 14: 4051–4064.

    Article  CAS  Google Scholar 

  30. Chaboute, M.-E., Chaubet, N., Philipps, G., Ehling, M., and Gigot, C. 1987. Genomic organization and nucleotide sequences of two histone H3 and two histone H4 genes of Arabidopsis thaliana. Plant Mol. Biol. 8: 179–191.

    Article  CAS  Google Scholar 

  31. Crawford, N. and Davis, R. 1987. Cloning of a nitrate-regulated gene from Arabidopsis. Abstract ♯44, 3rd International meeting on Arabidopsis. Michigan State University.

  32. Haughn, G.W. and Somerville, C.R. 1987. An Arabidopsis acetolactate synthase gene in tobacco confers resistance to sulfonylurea herbicides. Abstract ♯42, 3rd International meeting on Arabidopsis. Michigan State University.

  33. Surowy, T.K. and Sussman, M.R. 1987. Cloning of plasma membrane H+ -ATPase from Arabidopsis thaliana. Abstract ♯115, 3rd International meeting on Arabidopsis. Michigan State University.

  34. Feinbaum, R. and Ausubel, F. 1987. The chalcone synthase gene of Arabidopsis thaliana is induced by high light intensity. Abstract ♯54, 3rd International meeting on Arabidopsis. Michigan State University.

  35. Last, R.L. and Fink, G.R. 1987. Molecular genetic analysis of amino acid and protein biosynthesis in Arabidopsis thaliana. Abstract ♯104, 3rd International meeting on Arabidopsis. Michigan State University.

  36. Wu, C., Casper, T., Browse, J., and Somerville, C.R. 1987. The HSP70 gene family from Arabidopsis. Abstract ♯148, 3rd International meeting on Arabidopsis. Michigan State University.

  37. Snustad, P., Oppenheimer, D., Ludwig, S., Haas, N., Kopczak, and Silflow, C. 1987. Tubulin genes of A. thaliana Columbia: tissue-specific patterns of transcript accumulation. Abstract ♯46, 3rd International meeting on Arabidopsis. Michigan State University.

  38. Pang, P.P.-Y. and Meyerowitz, E.M. 1987. Seed specific gene expression in Arabidopsis. Abstract ♯53, 3rd International meeting on Arabidopsis. Michigan State University.

  39. Simon, A.E., Tenbarge, K.M., Scofield, S.R., Finkelstein, R.R., and Crouch, M.L. 1985. Nucleotide sequence of a cDNA clone of Brassica napus 12S storage protein shows homology with legumin from Pisum sativum. Plant Mol. Biol. 5: 191–210.

    Article  CAS  Google Scholar 

  40. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T. 1985. A simple and general method of transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  41. Lloyd, A.M., Barnason, A.R., Rogers, S.G., Byrne, M.C., Fraley, R.T., and Horsch, R.B. 1986. Transformation of Arabidopsis with Agrobacterium tumefaciens. Science 234: 464–466.

    Article  CAS  Google Scholar 

  42. Chang, C. and Meyerowitz, E.M. 1987. Genetic transformation of Arabidopsis-complementation of an alcohol dehydrogenase null mutant with the Arabidopsis Adh gene. Abstract ♯117, 3rd International meeting on Arabidopsis. Michigan State University.

  43. Chang, C., DeJohn, A.W., Pruitt, R.E., and Meyerowitz, E.M. 1987. A restriction fragment length polymorpism map of the Arabidopsis genome. Abstract ♯31, 3rd International meeting on Arabidopsis. Michigan State University.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, P., Meyerowitz, E. Arabidopsis Thaliana: A Model System for Plant Molecular Biology. Nat Biotechnol 5, 1177–1181 (1987). https://doi.org/10.1038/nbt1187-1177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1187-1177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing