Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Purification and Characterization of Recombinant Urokinase from Escherichia coli

Abstract

Recombinant urokinase has been refolded and purified from Escherichia coli in both its high and low molecular weight forms. The low molecular weight form of the protein has been characterized by specific activity, amino acid composition, amino terminal analysis, carboxy terminal analysis, tryptic mapping, antibody titrations, and chromatographic behavior. The high molecular weight form has been characterized by specific activity and chromatographic behavior. With the exception of the lack of carbohydrate attached to Asn 302, the recombinant urokinase is almost identical to natural urokinase in every way tested. The results indicate that the urokinase can be properly folded from E. coli and that the carbohydrate attached to natural urokinase does not play a role in the catalytic activity of the enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bernik, M.B. and Kwaan, H.C. 1967. Origin of fibrinolytic activity in cultures of the human kidney. J. Lab. Clin. Med. 70: 650–661.

    CAS  PubMed  Google Scholar 

  2. Bernik, M.B. and Oller, E.P. 1973. Increased plasminogen activator (urokinase) in tissue culture after fibrin deposition. J. Clin. Invest., 52: 823–834.

    Article  CAS  Google Scholar 

  3. Booyse, F.M., Osikowicz, G., Feder, S. and Sheinbuks, J. 1984. Isolation and characterization of a urokinase-type plasminogen activator (Mr=54,000) from cultured human endothelial cells indistinguishable from urinary urokinase. J. Biol. Chem. 259: 7198–7205.

    CAS  PubMed  Google Scholar 

  4. White, W.F., Barlow, G.H. and Mozen, M.M. 1966. The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 5: 2160–2169.

    Article  CAS  Google Scholar 

  5. Gunzler, W.A., Steffens, G.J., Otting, F., Kim, S.A., Frankus, E. and Flohe, L. 1982. The primary structure of high molecular mass urokinase from human urine: The complete amino acid sequence of the A chain. Hoppe-Seyler's Z. Physiol. Chem. Bd. 363: 1155–1165.

    Article  CAS  Google Scholar 

  6. Steffens, G.J., Gunzler, W.A., Otting, F., Frankus, E. and Flohe, L. 1982. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe-Seyler's Z. Physiol. Chem. Bd. 363: 1043–1058.

    Article  CAS  Google Scholar 

  7. Holmes, W.E., Pennica, D., Blaber, M., Gunzler, W.A., Steffens, G.J. and Heyneker, H.L. 1985. Cloning and expression of human urokinase type plasminogen activator in Escherichia coli. Bio/Technology 3: 923–929.

    Article  CAS  Google Scholar 

  8. DeBoer, H.A., Comstock, L.J. and Vasser, M. 1983. The tac promotor: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 21–25.

    Article  CAS  Google Scholar 

  9. Ahmed, A.K., Schaffer, S.W. and Wetlaufer, D.B. 1975. Nonenzymatic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J. Biol. Chem. 250: 8477–8482.

    CAS  PubMed  Google Scholar 

  10. Granelli-Piperno, A. and Reich, E. 1978. A study of proteases and protease-inhibitor complexes in biological fluids. J. Exp. Med. 148: 223–234.

    Article  CAS  Google Scholar 

  11. deHaen, C., Neurath, H. and Teller, D.C. 1975. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J. Mol. Biol. 92: 225–259.

    Article  CAS  Google Scholar 

  12. Steffens, G.J., Gunzler, W.A., Henninger, W., Hennies, H.H., Kim, S.M.A., Otting, F., Frankus, E., Flohe, L., Blaber, M. and Winkler, M. 1984. Molecular characterization of human urokinase produced in bacteria as compared to urokinase obtained from human urine. 7th Internat. Congr. on Fibrinolysis (Venice, Italy) Haemostasis Abs. No. 105.

  13. Morehead, H., McKay, P. and Wetzel, R. 1982. High-performance liquid chromatography analysis in the synthesis, characterization, and reactions of neoglycopeptides. Anal. Biochem. 126: 29–36.

    Article  CAS  Google Scholar 

  14. Varadi, A. and Patthy, L. 1981. Kringle 5 of human plasminogen carries a benzamidine-binding site. Biochem Biophys. Res. Commun. 103: 97–102.

    Article  CAS  Google Scholar 

  15. Sumi, H. and Robbins, K.C. 1983. A functionally active heavy chain derived from human high molecular weight urokinase. J. Biol. Chem. 258: 8014–8019.

    CAS  PubMed  Google Scholar 

  16. Linscott, W.D. 1963. Contamination of commercial rabbit albumin preparations by bovine albumin. Science 142: 1170–1172.

    Article  CAS  Google Scholar 

  17. Minden, P. and Farr, R.S. 1978. Ammonium sulphate method to measure antigen-binding capacity, chapter 13. In: Handbook of Experimental Immunology, Third Edition. Weir, D. M. (ed.), Black-well Scientific Publications, Oxford, U.K.

    Google Scholar 

  18. Lidd, D. and Farr, R.S. 1963. Similarities between antigens derived from ragweed pollen and from other botanical sources. J. Allerg. 34: 48–62.

    Article  CAS  Google Scholar 

  19. Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T.E. and Magnusson, S. 1978. The primary structure of human plasminogen: Isolation of two lysine-binding fragments and one “mini” plasminogen (M.W.=38,000) by elastase-catalyzed specific limited proteolysis. Progress in Chemical Fibrinolysis and Thrombolysis 3: 191–209.

    CAS  Google Scholar 

  20. Rijken, D.C. and Collen, D. 1981. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J. Biol. Chem. 256: 7035–7041.

    CAS  Google Scholar 

  21. Strickland, T.W. and Pierce, J.G. 1985. Effect of carbohydrate on the folding of the α-subunit of the bovine glycoprotein hormones. J. Cell Biochem. Supplement 9B, 124, Abst. No. 0724.

    Google Scholar 

  22. Collen, D., DeCock, F. and Lijnen, H.R. 1984. Biological and thrombolytic properties of proenzyme and active forms of human urokinase II. Turnover of natural and recombinant urokinase in rabbits and squirrel monkeys. Thromb. Haemostas. 52: 24–26.

    CAS  Google Scholar 

  23. Collen, D., Stassen, J.M., Blaber, M., Winkler, M. and Verstraete, M. 1984. Biological and thrombolytic properties of proenzyme and active forms of human urokinase. III. Thrombolytic properties of natural and recombinant urokinase in rabbits with experimental jugular vein thrombosis. Thromb. Haemostas. 52: 27–30.

    CAS  Google Scholar 

  24. Holmberg, L., Bladh, B. and Astedt, B. 1976. Purification of urokinase by affinity chromatography. Biochim. Biophys. Acta 445: 215–222.

    Article  CAS  Google Scholar 

  25. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Burnette, W.N. 1981. “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195–203.

    Article  CAS  Google Scholar 

  27. Ploug, J. and Kjeldgaard, N.O. 1957. Urokinase: An activator of plasminogen from human urine. I. Isolation and properties. Biochim. Biophys. Acta 24: 278–282.

    Article  CAS  Google Scholar 

  28. Hayashi, S. and Yamada, K. 1981. Assay of urokinase activity in plasma with a chromogenic substrate. Thrombosis Research, 22: 573–578.

    Article  CAS  Google Scholar 

  29. Shimada, H., Mori, T., Takada, A., Takada, Y., Noda, Y., Takai, I., Kohda, H. and Nishimura, T. 1981. Use of chromogenic substrate S-2251 for determination of plasminogen activator in rat ovaries. Thromb. Haemostas. 46: 507–510.

    Article  CAS  Google Scholar 

  30. Rodriguez, H., Kohr, W.J. and Harkins, R.N. 1984. Design and Operation of a Completely Automated Beckman Microsequencer. Analytical Biochem., 140: 538–547.

    Article  CAS  Google Scholar 

  31. Greenwood, F.C., Hunter, W.M. and Glover, J.S. 1963. The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J. 89: 114–123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, M., Blaber, M., Bennett, G. et al. Purification and Characterization of Recombinant Urokinase from Escherichia coli. Nat Biotechnol 3, 990–1000 (1985). https://doi.org/10.1038/nbt1185-990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1185-990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing