Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular Biology and Ecology of Diazotrophs Associated with Non-Leguminous Plants

An Erratum to this article was published on 01 February 1985

Abstract

Only some prokaryotes have evolved the genetic information for nitrogen fixation. These prokaryotes, when associated with plants, can contribute to their growth by providing reduced nitrogen (ammonia). The genetics of nitrogen fixation was elucidated in Klebsietta pneumoniae, where it was found that 17 genes, regulated through sophisticated mechanisms, were required. Studies on the genes involved in other bacteria are in progress. Nitrogen fixation by non-legumes is quantitatively important. Efficient symbiosis between actinomycetes and trees, and between cyanobacteria and various plants are known and can be exploited on ecological and agronomic bases. Numerous species of nitrogen-fixing bacteria proliferate in the root zone of grasses and appear to have potential as fertilizer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hardy, R.W.F. and Havelka, U.D. 1975. Nitrogen fixation research: a key to world food? Science 188: 633–643.

    CAS  PubMed  Google Scholar 

  2. Burris, R.H. 1980. The global nitrogen budget—Science or Seance? p. 7–16. In: Nitrogen fixation: free-living systems and chemicals models. W.E. Newton and W.H. Orme-Johnson (eds.), University Park Press, Baltimore.

    Google Scholar 

  3. Dawson, J.O. 1983. Dinitrogen fixation in forest ecology. Can. J. Microbiol. 29: 979–992.

    CAS  Google Scholar 

  4. Becking, J.H. 1981. The genus Frankia, p. 1991–2003. In: The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. M.P. Starr, H. Stolp, H.G. Trüper, A. Balows and H.G. Schlegel (eds.), Springer-Verlag, Berlin, Heidelberg, New-York.

    Google Scholar 

  5. Stewart, W.D.P., Rowell, P. and Rai, A.N. 1983. Cyanobacteria-cukaryotic plant symbiosis. Ann. Microbiol. (Inst. Pasteur) 134B: 205–228.

    CAS  Google Scholar 

  6. Lumpkin, T.A. and Plucknett, D. 1980. Azolla: botany, physiology, and use as a green manure. Economic Botany 34: 111–153.

    CAS  Google Scholar 

  7. Postgate, J.R. 1981. Microbiology of the free-living nitrogen-fixing bacteria, excluding cyanobacteria, p. 217–228. In: Current perspectives in nitrogen fixation. A.H. Gibson and W.E. Newton (eds.), Australian Academy of Science, Canberra.

    Google Scholar 

  8. Von Bülow, J.W.F. and Döbereiner, J. 1975. Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Natl. Acad. Sci. (USA) 72: 2389–2393.

    Google Scholar 

  9. Boddey, R.M. and Döbereiner, J. 1982. Associations of Azospirillum and other diazotrophs with tropical Gramineae, p. 28–47. In: Non-symbiotic nitrogen fixation and organic matter in the tropics. Inter national Society of Soil Science, Food and Agriculture Organization, Rome.

    Google Scholar 

  10. Eady, R.R. and Postgate, J.R. 1974. Nitrogenase, Nature (London), 249: 805–810.

    CAS  PubMed  Google Scholar 

  11. Mortenson, L.E. and Thorneley, R.N.F. 1979. Structure and func tion of nitrogenase. Ann. Rev. Biochem. 48: 387–418.

    CAS  PubMed  Google Scholar 

  12. Brill, W.J. 1980. Biochemical genetics of nitrogen fixation. Microbiol. Rev. 44: 449–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Robson, R.L. and Postgate, J.R. 1980. Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34: 183–207.

    CAS  Google Scholar 

  14. Eady, R. 1981. Regulation of nitrogenase activity, p. 172–182. In: Current perspectives in nitrogen fixation. A.H. Gibson and W.J. Newton (eds.), Australian Academy of Science, Canberra.

    Google Scholar 

  15. Robson, R., Kennedy, C., and Postgate, J.R. 1983. Progress in comparative genetics of nitrogen fixation. Can. J. Microbiol. 29: 954–967.

    CAS  PubMed  Google Scholar 

  16. McNeil, T., McNeil, D., Roberts, G.P., Supianio, M.A., and Brill, W.J. 1978. Fine structure mapping and complementation analysis of nif (nitrogen fixation) genes in Klebsiella pneumonia . J. Bacteriol. 136: 253–266.

    Google Scholar 

  17. Riedel, G.E., Ausubel, F.M., and Cannon, F.C. 1979. The physical map of nitrogen fixation (nif) genes of Klebsiella pneumonias . Proc. Natl. Acad. Sci. (USA) 76: 2866–2870.

    CAS  Google Scholar 

  18. Merrick, M., Filser, M., Dixon, R., Elmerich, C., Sibold, L., and Houmard, J. 1980. Use of translocatable genetic elements to construct a fine structure map of the Klebsiella pneumoniae nitrogen fixation (nif) gene cluster. J. Gen. Microbiol. 117: 509–520.

    CAS  PubMed  Google Scholar 

  19. Pühler, A. and Klipp, W. 1981. Fine structure analysis of the gene region for N2-fixation (nif) of Klebsiella pneunumiae, p. 276–286. In: Biology of inorganic nitrogen and sulfur. H. Bothe, and A. Trebst (eds.), Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  20. Sibold, L. 1982. The polar effect on nifM of mutations in the nifU, -S, -V genes of Klebsiella pneumoniae depends on their plasmid or chromosomal location. Mol. Gen. Genet. 186: 569–571.

    CAS  PubMed  Google Scholar 

  21. Beynon, J., Cannon, M., Buchanan-Wollaston, V., and Cannon, F. 1983. The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34: 665–671.

    CAS  PubMed  Google Scholar 

  22. Pühler, A., Aguilar, M. O., Hynes, M., Müller, P., Klipp, W., Priefer, U., Simon, R., and Weber, G. 1984. Advances in the genetics of free-living and symbiotic nitrogen fixing bacteria, p. 609–619. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk Publishers, The Hague and Pudoc, Wageningen.

    Google Scholar 

  23. Drummond, M., Clements, J., Merrick, M., and Dixon, R. 1983. Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae . Nature 301: 302–307.

    CAS  Google Scholar 

  24. Shen, S.C., Xue, Z.T., Kony, Q.T., and Wu, Q.L. 1983. An open reading frame upstream from the nifH gene of Klebsiella pneumoniae . Nucleic Acids Res. 11: 4221–4250.

    Google Scholar 

  25. Sibold, L., Quiviger, B., Charpin, N., Paquelin, A., and Elmerich, C. 1983. Cloning and expression of a DNA fragment carrying a his nif A fusion and the nifBQ operon from a nif constitutive mutant of Klebsiella pneumoniae . Biochimie 65: 53–63.

    CAS  PubMed  Google Scholar 

  26. Imperial, J., Ugalde, R.A., Shah, V.K., and Brill, W.J. 1984. Role of the nifQ gene product in the incorporation of .molybdenum into nitrogenase in Klebsiella pneumonia . J. Bacteriol. 158: 187–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eady, R.R., Smith, B.E., Cook, K.A., and Postgate, J.R. 1972. Nitrogenase of Klebsiella pneumoniae—purificalion and properties of the component proteins. Biochem. J. 124: 655–675.

    Google Scholar 

  28. Nieva-Gomez, D., Roberts, G.P., Klevickis, S., and Brill, W.J. 1980. Electron transport to nilrogenase in Klebsiella pneumoniae . Proc. Natl. Acad. Sci. (USA) 77: 2555–2558.

    CAS  Google Scholar 

  29. Bogusz, D., Houmard, J., and Aubert, J.P. 1981. Electron transport to nitrogenase in Klebsiella pneumoniae: purification and properties of the nifJ protein. Eur. J. Biochem. 120: 421–426.

    CAS  PubMed  Google Scholar 

  30. Shah, V.K., Stacey, G., and Brill, W.J. 1983. Electron transport to nitrogenase: purification and characterization of pyruvate flavodoxin oxydoreductase, the nifJ gene product. J. Biol. Chem. 258: 12064–12068.

    CAS  PubMed  Google Scholar 

  31. Scott, K.F., Rolfe, B.G., and Shine, J. 1981. Biological nitrogen fixation: primary structure of the Klebsiella pneumoniae nifH and nifD genes. J. Mol. Appl. Genet. 1: 71–81.

    CAS  PubMed  Google Scholar 

  32. Sundaresan, V. and Ausubel, F.M. 1981. Nucleotide sequence of the gene coding for the nitrogenase iron protein from Klebsiella pneumoniae . J. Biol. Chem. 256: 2808–2812.

    CAS  PubMed  Google Scholar 

  33. Shah, V.K. and Brill, W.J. 1977. Isolation of an iron molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. (USA) 74: 3249–3253.

    CAS  Google Scholar 

  34. Roberts, G.P., MacNeil, T., MacNeil, D., and Brill, W.J. 1978. Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae . J. Bacteriol. 136: 267–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McLean, P.A. and Dixon, R.A. 1981. Requirement of nifV gene for production of wild type nitrogenase enzyme in Klebsiella pneumoniae . Nature 292: 655–656.

    CAS  PubMed  Google Scholar 

  36. Hill, S. and Kavanagh, E.P. 1980. Role of nifF and nifJ gene products in electron transport to nitrogenase. J. Bacteriol. 141: 470–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tubb, R.S. and Postgate, J.R. 1973. Control of nitrogenase synthesis in Klebsiella pneumoniae . J. Gen. Microbiol. 79: 103–117.

    CAS  PubMed  Google Scholar 

  38. Eady, R.R., Issack, R., Kennedy, C., Postgate, J.R., and Ratcliffe, H.D. 1978. Nitrogenase synthesis in Klebsiella pneumoniae comparison of ammonium and oxygen regulation. J. Gen. Microbiol. 104: 277–285.

    CAS  PubMed  Google Scholar 

  39. Kaluza, K. and Hennecke, H. 1981. Regulation of nitrogenase messenger RNA synthesis and stability in Klebsiella pneumoniae . Arch. Microbiol. 130: 38–43.

    CAS  PubMed  Google Scholar 

  40. St John, R.T., Shah, V.K., and Brill, W.J. 1974. Regulation of nitrogenase synthesis by oxygen in Klebsiella pneumoniae . J. Bacteriol. 119: 266–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hennecke, H. and Shanmugam, K.T. 1979. Temperature control of nitrogen fixation in Klebsiella pneumoniae . Arch. Microbiol. 123: 259–265.

    CAS  PubMed  Google Scholar 

  42. Kahn, D., Hawkins, M., and Eady, R.R. 1982. Nitrogen fixation in Klebsiella pneumoniae: nitrogenase levels and the effect of added molyhdate on nitrogenase derepressed under molybdenum deprivation. J. Gen. Microbiol. 128: 779–787.

    CAS  Google Scholar 

  43. Kleiner, D. and Phillips, S. 1981. Relative levels of guanosine 5′ diphosphate 3′ diphosphate (ppGpp) in some N2 fixing bacteria during derepression and repression of nitrogenase. Arch. Microbiol. 128: 341–342.

    CAS  PubMed  Google Scholar 

  44. Riesenberg, D. and Kari, C. 1981. Isolation and characterization of prototrophic relaxed mutants of K. pneumoniae . Mol. Gen. Genet. 181: 476–483.

    CAS  PubMed  Google Scholar 

  45. Jensen, J.S. and Kennedy, C. 1982. Pleiotropic effect of his gene mutations on nitrogen fixation in Klebsiella pneumoniae . EMBO J. 1: 197–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dixon, R., Kennedy, C., Kondorosi, A., Krishnapillai, V., and Merrick, M. 1977. Complementation analysis of Klebsiella pneumoniae mutants. Mol. Gen. Genet. 157: 189–198.

    CAS  PubMed  Google Scholar 

  47. Streicher, S.L., Shanmugam, K.T., Ausubel, F., Morandi, C., and Goldberg, R.B. 1974. Regulation of nitrogen fixation in Klebsiella pneumoniae: evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J. Bacteriol. 120: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tubb, R.S. 1974. Glutamine synthetase and ammonia regulation of synthesis in Klebsiella pneumoniae . Nature 251: 481–485.

    CAS  PubMed  Google Scholar 

  49. Tyler, B. 1978. Regulation of the assimilation of nitrogen compounds. Ann. Rev. Biochem. 47: 1127–1162.

    CAS  PubMed  Google Scholar 

  50. Magasanik, B. 1982. Genetic control of nitrogen assimilation. Ann. Rev. Genet. 16: 135–168.

    CAS  PubMed  Google Scholar 

  51. Dixon, R.A., Alvarez-Morales, A., Clements, J., Drummond, M., Merrick, M., and Postgate, J.R. 1984. Transcriptional control of the nif regulon in Klebsiella pneumoniae, p. 635–642. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk Publishers, The Hague, and Pudoc Wageningen.

    Google Scholar 

  52. Leonardo, J.M. and Goldberg, R.B. 1980. Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae . J. Bacteriol. 142: 99–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Bruijn, F.J. and Ausubel, F.M. 1983. The cloning and characterization of the glnF (ntrA) gene of Klebsiella pneumoniae: role of glnF (ntrA) in the regulation of nitrogen fixation (nif) and other nitrogen assimilation genes. Mol. Gen. Genet. 192: 342–353.

    CAS  Google Scholar 

  54. Ausubel, F.M., Bird, S.C., Durbin, K.J., Janssen, K.A., Margolskee, R.F., and Peskin, A. 1979. Glutamine synthetase mutations which affect expression of nitrogen fixation genes in Klebsiella pneumoniae . J. Bacteriol. 140: 597–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Espin, G., Alvarez-Morales, A., and Merrick, M. 1981. Complementation analysis of glnA-linked mutations which affect nitrogen fixation in Klebsiella pneumoniae . Mol. Gen. Genet. 184: 213–217.

    CAS  PubMed  Google Scholar 

  56. de Bruijin, F.J. and Ausubel, F.M. 1981. The cloning and transposon Tn5 mutagenesis of the glnA region of Klebsiella pneumoniae identification of glnR, a gene involved in the regulation of the nif and hut operons. Mol. Gen. Genet. 183: 289–297.

    Google Scholar 

  57. Espin, G., Alvarez-Morales, A., Cannon, F., Dixon, R., and Merrick, M. 1982. Cloning of the glnA, ntrB and ntrC genes of Klebsiella pneumoniae and studies of their role in regulation of the nitrogen fixation (nif) gene cluster. Mol. Gen. Genet. 186: 518–524.

    CAS  PubMed  Google Scholar 

  58. Bender, R.A., Snyder, P.M., Bueno, R., Quinto, M., and Magasanik, B. 1983. Nitrogen regulation system of Klebsiella aerogenes: the nac gene. J. Bacteriol. 156: 444–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Close, T.J. and Shanmugam, K.T. 1980. Genetic analysis of a pleiotropic mutant of Klebsiella pneumoniae affected in nitrogen metabolism. J. Gen. Microbiol. 116: 501–510.

    CAS  PubMed  Google Scholar 

  60. Alvarez-Morales, A., Dixon, R., and Merrick, M. 1984. Positive and negative control of the glnA ntrBC regulon in Klebsiella pneumoniae . EMBO J. 3: 501–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Merrick, M.J. 1983. Nitrogen control of the nif regulon in Klebsiella pneumoniae. Involvement of the ntrA gene and analogies between ntrC and nifA . EMBO J. 2: 39–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. MacNeil, D. and Brill, W.J. 1980. Mutations in nif genes that cause Klebsiella pneumoniae to be derepressed for nitrogenase synthesis in the presence of ammonium. J. Bacteriol. 144: 744–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sibold, L., Melck, D., and Elmerich, C. 1981. A nif mutant of Klebsiella pneumoniae fixing nitrogen in the presence of ammonia. FEMS Microbiol. Lett. 10: 37–41.

    CAS  Google Scholar 

  64. Buchanan-Wollaston, V., Cannon, M.C., Beynon, J.L., and Cannon, F.C. 1981. Role of nifA gene product in the regulation of nif expression in Klebsiella pneumoniae . Nature 294: 776–778.

    CAS  PubMed  Google Scholar 

  65. Sibold, L. and Elmerich, C. 1982. Constitutive expression of nitrogen fixation (nif) genes of Klebsiella pneumoniae due to a DNA duplication. EMBO J. 1: 1551–1558.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McFarland, N., McCarter, L., Artz, S., and Kustu, S. 1981. Nitrogen regulatory locus glnR of enteric bacteria is composed of cistrons ntrB and ntrC: identification of their protein products. Proc. Natl. Acad. Sci. (USA) 78: 2135–2139.

    CAS  Google Scholar 

  67. Dixon, R., Eady, R., Espin, G., Hill, S., Iaccarino, M., Kahn, D., and Merrick, M. 1980. Analysis of regulation of the Klebsiella pneumoniae nitrogen fixation nif gene cluster with nif fusions. Nature 286: 128–132.

    CAS  Google Scholar 

  68. Ow, D.W. and Ausubel, F.M. 1983. Regulation of nitrogen metabolism genes by nifA gene product in Klebsiella pneumoniae . Nature 301: 307–313.

    CAS  Google Scholar 

  69. Hill, S., Kennedy, C., Kavanagh, E., Goldberg, R.B., and Hanau, R. 1981. Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in K. pneumoniae . Nature 290: 424–426.

    CAS  PubMed  Google Scholar 

  70. Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. 1982. Repressor properties of the nifL gene product in Klebsiella pneumoniae . Mol. Gen. Genet. 185: 75–81.

    CAS  Google Scholar 

  71. Buchanan-Wollaston, V., Cannon, M.C., and Cannon, F.C. 1981. The use of cloned nif nitrogen fixation DNA to investigate transcriptional regulation of nif expression in Klebsiella pneumoniae . Mol. Gen. Genet. 184: 102–106.

    CAS  PubMed  Google Scholar 

  72. Zhu, J. and Brill, W.J. 1981. Temperature sensitivity of the regulation of nitrogenase synthesis by Klebsiella pneumoniae . J. Bacteriol. 145: 116–118.

    Google Scholar 

  73. Sundaresan, V., Ow, D.W., and Ausubel, F.M. 1983. Activation of Klebsiella pneumoniae and Rhizobium meliloti nitrogenase promoters by gln (ntr) regulatory proteins. Proc. Natl. Acad. Sci. (USA) 80: 4030–4034.

    CAS  Google Scholar 

  74. Ow, D., Sundaresan, V., Rothstein, D.M., Brown, S.E., and Ausubel, F.M. 1983. Promoters regulated by the glnG (ntrC) and (nifA) gene products share a heptameric consensus sequence in the -15 region. Proc. Natl. Acad. Sci. (USA) 80: 2524–2528.

    CAS  Google Scholar 

  75. Cannon, F.C., Riedel, G.E., and Ausubel, F.M. 1977. Recombinant plasmid that carries part of the nitrogen fixation (nif) gene cluster of Klebsiella pneumoniae . Proc. Natl. Acad. Sci. (USA) 74: 2963–2967.

    CAS  Google Scholar 

  76. Ruvkun, G.B. and Ausubel, F.M. 1980. Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. (USA) 77: 191–195.

    CAS  Google Scholar 

  77. Mazur, B.J., Rice, D., and Haselkorn, R. 1980. Identification of blue green algal nitrogen fixation genes by using heterologous DNA hybridization probes. Proc. Natl. Acad. Sci. (USA) 77: 186–190.

    CAS  Google Scholar 

  78. Franche, C. and Elmerich, C. 1981. Physiological properties and plasmid content of several strains of Azospirillum brasilense and A. lipoferum . Ann. Microbiol. (Inst. Pasteur) 132: 3–18.

    Google Scholar 

  79. Plazinsky, J., Dart, P.J., and Rolfe, B.G. 1983. Plasmid visualization and nif gene location in nitrogen fixing Azospirillum strains. J. Bacteriol. 155: 1429–1433.

    Google Scholar 

  80. Elmerich, C. 1983. Azospirillum genetics, p. 367–372. In: Molecular genetics of the bacteria plant interaction. A. Pühler (ed). Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  81. Robson, R., Jones, R., Kennedy, C.K., Drummond, M., Ramos, J., Woodley, P.R., Wheeler, C., Chcssyre, J., and Postgate, J.R. 1984. Aspects of genetics of Azvtobacter, p. 643–651. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk, Publishers, The Hague and Pudoc, Wageningen.

  82. Yano, K., Anazawa, M., Murai, F., and Fukuda, M. 1984. pMYL, a large plasmid of Azotobacter vinelandii AVY5, has DNA sequences hyoridizable to Kpnif and PpXyl, p 751. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk, Publishers, The Hague and Pudoc, Wageningen.

    Google Scholar 

  83. Simon, R.D. 1978. Survey of extrachromosomal DNA found in the filamentous cyanobacteria. J. Bacteriol. 136: 415–418.

    Google Scholar 

  84. Lau, R.H., Sapienza, C., and Doolittle, W.F. 1980. Cyanobacterial plasmids: their widespread occurence, and the existence of regions of homology between plasmids in the same and different species. Mol. Gen. Genet. 178: 203–211.

    CAS  PubMed  Google Scholar 

  85. Kallas, T., Rebière, M.C., Rippka, R., and Tandeau de Marsac, N. 1983. The structural nif genes of the cyanobacteria Gloeothece sp. and Calothrix sp. share homology with Anabeana sp., but the Gloeothece genes have a different arrangement. J. Bacteriol. 155: 427–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Singh, M., Kleeberger, A., and KlingMüller, W. 1983. Location of nitrogen fixation (nif) genes on indigenous plasmids of Enterobacter agglomerans . Mol. Gen. Genet. 190: 373–378.

    CAS  Google Scholar 

  87. Normand, P., Simonet, P., Butour, J.L., Rosenberg, C., Moiroud, A., and Lalonde, M. Plasmids in Frankia sp. J. Bacteriol. 155: 32–35.

  88. Derylo, M., Glowacka, M., Skorupska, A., and Lorkiewicz, Z. 1981 Nif plasmid from Lignobacter . Arch. Microbiol. 130: 322–324.

    CAS  Google Scholar 

  89. Rosenberg, C., Boistard, P., Denarié, J., and Casse-Delbart, F. 1981. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti . Mol. Gen. Genet. 184: 326–333.

    CAS  PubMed  Google Scholar 

  90. Banfalvi, Z., Sakanyan, V., Koncz, C., Kiss, A., Dusha, I., and Kondorosi, A. 1981. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti . Mol. Gen. Gen. 184: 318–325.

    CAS  Google Scholar 

  91. Lamb, J.W., Hombrecher, G., and Johnston, A.W.B. 1982. Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli . Mol. Gen. Genet. 186: 449–452.

    CAS  Google Scholar 

  92. Prakash, R.K., Schilperoort, R.A., and Nuti, M.P. 1981. Large plasmids of fast-growing rhizobia: homology studies and location of structural nitrogen fixation (nif) genes. J. Bacteriol. 145: 1129–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Denarié, J., Boistard, P., Casse-Delbart, F., Atherly, A.G., Berry, J.O., and Russell, P. 1981. Indigenous plasmids of Rhizobium sp., p. 225–246. In: Biology of the Rhizobiaceae, A.G. Atherly (ed.). Academic Press, New-York.

    Google Scholar 

  94. Gross, D.C., Vivader, A.D., and Klucas, R.V. 1979. Plasmids, biological properties and efficacy of nitrogen fixation in Rhizobium japonicum strains indigenous to alkaline soils. J. Gen. Microbiol. 114: 257–266.

    CAS  Google Scholar 

  95. Brewin, N.J., Delong, T.M., Phillips, D.A., and Johnston, A.W.B. 1980. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum . Nature, 288: 77–79.

    CAS  Google Scholar 

  96. Cantrell, M.A., Hickok, R.E., and Evans, H.J. 1982. Identification and characterization of plasmids in hydrogen uptake positive and hydrogen uptake negative strains of Rhizobium japonicum . Arch. Microbiol. 131: 102–106.

    CAS  Google Scholar 

  97. Beynon, J.L., Beringer, J.F., and Johnston, A.W.B. 1980. Plasmids and host-range in Rhizobium leguminosarum and Rhizobium phaseoli . J. Gen. Microbiol. 120: 421–429.

    Google Scholar 

  98. Downie, J.A., Hombrecher, G., Ma, Q.S., Knight, C.D., Welles, B., and Johnston, A.W.B. 1983. Gloncd nodulation genes of Rhizobium leguminosarum determine host range specificity. Mol. Gen. Genet. 190: 359–365.

    CAS  Google Scholar 

  99. Brewin, N.J., Beringer, J.E., Buchanan-Wollaston, A.V., Johnston, A.W.B., and Hirsch, P.R. 1980. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum . J. Gen. Microbiol. 116: 261–270.

    CAS  Google Scholar 

  100. Cole, M.A., and Elkan, G.H. 1973. Transmissible resistance to penicillin G, neomycin and chloramphenicol in Rhizobium japonicum . Antimicrobial Agents and Chemotherapy 4: 248–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hooykaas, P.P.J., and Schilperoort, R.A. 1984. The molecular genetics of crown gall tumorigenesis. Adv. Gen. 22: 209–283.

    CAS  Google Scholar 

  102. Petit, A., David, C., Dahl, G.A., Ellis, J.G., Guyon, P., Casse-Delbart, F., and Tempé, J. 1983. Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol. Gen. Genet. 190: 204–214.

    CAS  Google Scholar 

  103. Comai, L., Surico, G., and Kosuge, T. 1983. Relation of plasmid DNA to indolacelic acid production in different strains of Pseudomonas synringae pv. savastanoi . J. Gen. Microbiol. 128: 2157–2163.

    Google Scholar 

  104. Nester, E.W., and Kosuge, T. 1981. Plasmids specifying plant hyperplaseas. Ann. Rev. Microbiol. 35: 531–565.

    CAS  Google Scholar 

  105. Elmerich, C., Quiviger, B., Rosenberg, C., Franche, C., Laurent, P., and Döbereiner, J. 1982. Characterization of a temperature bacteriophage for Azospirillum . Virology 122: 29–37.

    CAS  PubMed  Google Scholar 

  106. Duff, J.T. and Wyss, O. 1961. Isolation and characterization of a new series of Azotobacter bacteriophages. J. Gen. Microbiol. 24: 273–289.

    CAS  PubMed  Google Scholar 

  107. Chuml, V.A., Thompson, B.J., Smiley, B.L., and Warner, R.C. 1980. Properties of Azotobacter phage PAV-1 and its DNA. Virology 102: 262–266.

    CAS  PubMed  Google Scholar 

  108. Thompson, B.J., Domingo, E., and Warner, R.C. 1980. Pseudolysogeny of Azotobacter phages. Virology 102: 267–277.

    CAS  PubMed  Google Scholar 

  109. Bishop, P.E., Supiano, M.A., and Brill, W.J. 1977. Technique for isolating phage for Azotobacter vinelandii . Appl. Environm. Microbiol. 33: 1007–1008.

    CAS  Google Scholar 

  110. Adolph, K.W., and Haselkorn, R. 1971. Isolation and characterization of a virus infecting the blue green alga Nostoc muscorum . Virology 46: 200–208.

    CAS  PubMed  Google Scholar 

  111. Hu, N.T., Thiel, T., Giddings, T.H., and Wolk, P.G., 1981. New Anabaena and Nostoc cyanophages from sewage settling ponds. Virology 114: 236–246.

    CAS  PubMed  Google Scholar 

  112. Gromov, B.V. 1983. Cyanophages. Ann. Microbiol. (Insi. Pasteur) 134B: 43–59.

    CAS  Google Scholar 

  113. Franche, C. 1984. Isolation and characterization of a new cyanophage infecting a tropical Nostoc strain, p 50. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk Publishers, The Hague and Pudoc, Wageningen.

    Google Scholar 

  114. Misrha, A.K., Roy, P., and Bhattacharya, S. 1979. Deoxyribonucleic acid—mediated transformation of Spirillum lipoferum, J. Bacteriol. 137: 1425–1426.

    Google Scholar 

  115. Page, W.J., and Sadoff, H.L. 1976. Physiological factors affecting transformation of Azotobacter vinelandii . J. Bacteriol. 125: 1080–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Page, W.J., and Von Tigerstrom, M. 1978. Induction of transformation competence in Azotobacter vinelandii iron limited cultures. Can. J. Microbiol. 24: 1590–1594.

    CAS  PubMed  Google Scholar 

  117. Bishop, P.E., and Brill, W.J. 1977. Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. J. Bacteriol. 130: 954–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Page, W.J. 1977. Transformation of Azotobacter vinelandii strains unable to fix nitrogen with Rhizobium spp. DNA. Can. J. Microbiol. 24: 209–214.

    Google Scholar 

  119. David, M., Tronchet, M., and Denarié, J. 1981. Transformation of Azotobacter vinelandii with plasmid RP4 (IncP-1 group) and RSF1010 (IncQ group). J. Bacteriol. 146: 1154–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Van den Hondel, C.A.M.J.J., Verbeek, S., Van der Ende, A., Weisbeek, P.J., Borrias, W.E., and Van Arkel, G.A. 1979. Introduction of transposon Tn901 into a plasmid of Anacystis nidulans: preparation for cloning in cyanobacteria. Proc. Natl. Acad. Sci.(USA) 77: 1570–1574.

    Google Scholar 

  121. Kumar, H.D., and Ueda, D. 1984. Conjugation in the cyanobacterium Anacystis nidulans . Mol. Gen. Genet. 195: 356–357.

    Google Scholar 

  122. Wolk, C.P., Vonshack, A., Kehoe, P., and Elhai, J. 1984. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen filamentous cyanobacteria. Proc. Natl. Acad. Sci. (USA) 81: 1561–1565.

    CAS  Google Scholar 

  123. Holloway, B.W. 1979. Plasmids that mobilize bacterial chromosome. Plasmid. 2: 1–19.

    CAS  PubMed  Google Scholar 

  124. Kondorosi, A., Vincze, E., Johnston, A.W.B., Beringer, J.E. 1980. A comparison of three Rhizobium linkage maps. Mol. Gen. Genet. 178: 403–408.

    CAS  Google Scholar 

  125. Franche, C., Canélo, E., Gauthier, D., and Elmerich, C. 1981. Mobilization of the chromosome of Azospirillum brasilense by plasmid R68-45. FEMS Microbiol. Lett. 10: 199–202.

    Google Scholar 

  126. Bazzicalupo, M., and Gallori, E. 1983. Genetic analysis in Azospirillum, p. 24–28. In: Azospirillum II. W. Klingmüller (ed.), Experientia Supplementum, Vol. 48, Birkhaüser Verlag, Basel.

    Google Scholar 

  127. Beringer, J., Beynon, J.L., Buehanan-Wollaston, A.V., and Johnston, A.W.B. 1978. Transfer of the drug resistance transposon Tn5 to Rhizobium . Nature 275: 633–634.

    Google Scholar 

  128. Elmerich, C. and Franche, C. 1982. Azospirillum genetics: plasmids, bacteriophages and chromosome mobilization, p 9–17. In: Azospirillum genetics, physiology, ecology. Klingmüller (ed.), Experentia Supplementum, Vol. 42, Birkhaüser Verlag, Basel.

  129. Simon, R., Priefer, U., and Pühler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1: 784–791.

    CAS  Google Scholar 

  130. Toukdarian, A.E. and Lidstrom, M.E. 1984. Molecular construction and characterization of nif mutants of the obligate methanotroph Methylosinus sp. strain 6. J. Bacteriol. 157: 979–983.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Knauf, V.C. and Nester, E.W. 1982. Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium T1 plasmid. Plasmid 8: 45–54.

    CAS  Google Scholar 

  132. Burns, A.T.H. and Reeve, E.C.R. 1984. Homology studies of the nif region in different wild strains of Klebsiella species, p. 733. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk Publishers, The Hague, and Pudoc, Wageningen.

    Google Scholar 

  133. Uozumi, T., Wang, P.L., Kok, S.K., Chung, K.S., and Beppu, T. 1984. Cloning and expression in E. coli of the whole nif genes of Klebsiella oxytoca, a nitrogen fixer in the rhizosphere of rice, p. 749. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk Publishers, The Hague, and Pudoc, Wageningen.

    Google Scholar 

  134. Dixon, R.A. and Postgate, J.R. 1982. Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli . Nature 237: 102–103.

    Google Scholar 

  135. Postgate, J.R. and Krishnapillai, V. 1977. Expression of Klebsiella nif and his genes in Salmonella typhimurium . J. Gen. Microbiol. 98: 379–385.

    CAS  PubMed  Google Scholar 

  136. Becking, J.H. 1981. The family Azotobacteraceae, p 795–817. In: The prokaryotes. M.P. Starr, H. Stolp, H.G. Trüper A. Balows and H.G. Schlegel (eds.) Springer-Verlag, Berlin, Heidelberg, NewYork.

    Google Scholar 

  137. Fisher, R. and Brill, W.J. 1969. Mutant of Azotobacter vinelandii unable to fix nitrogen. Biochim. Biophys. Acta. 184: 99–105.

    CAS  PubMed  Google Scholar 

  138. Gordon, J.K., and Brill, W.J. 1982. Mutants that produce nitrogenase in the presence of ammonia. Proc. Natl. Acad. Sci. (USA) 69: 3501–3503.

    Google Scholar 

  139. Shah, V.K., Davis, L.C., Gordon, J.K., Orme-Johnson, W.H., and Brill, W.J. 1983. Nitrogenaseless mutants of Azotobacter vinelandii: activities, cross reactions and EPR spectra. Biochim. Biophys. Acta. 292: 246–255.

    Google Scholar 

  140. Nagatini, H.H., Shah, V.K., and Brill, W.J. 1974. Activation of inactive nitrogenase by acid treated component I. J. Bacterial. 120: 697–701.

    Google Scholar 

  141. Medhora, M., Phadnis, S.H., and Das, H.K. 1983. Construction of a gene library from the nitrogen fixing aerobe Azotobacter vinelandii . Gene. 25: 355–360.

    CAS  PubMed  Google Scholar 

  142. Krol, A.J.M., Hontelez, J.G.J., Roozendaal, B., and Van Kamen, A. 1981. On the operon structure of the nitrogenase genes of Rhizobium leguminosarum and Azotobacter vinelandii . Nucleic Acids Res. 10: 4147–4157.

    Google Scholar 

  143. Jones, R., Woodley, P., and Robson, R. 1984. Cloning and organization of some genes for nitrogen fixation from Azotobacter chroococcum and their expression in Klebsiella pneumoniae . Mol. Gen. enet. In press.

  144. Bishop, P.E., Jarlenski, D.M.L., and Hetherington, D.R. 1980. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii . Proc. Natl. Acad. Sci. (USA) 77: 7342–7346.

    CAS  Google Scholar 

  145. Kennedy, C. and Robson, R.L. 1983. Activation of nif gene expression in Azotobacter by the nifA gene product of Klebsiella pneumoniae . Nature 301: 626–628.

    CAS  PubMed  Google Scholar 

  146. Nair, S.K., Jara, P., Quiviger, B., and Elmerich, C. 1983. Recent developments in the genetics of nitrogen fixation in Azospirillum, p. 29–38. In: Azospirillum II. W. Klingmüller (ed.), Experentia Supplementum, Vol. 48, Birkhauser Verlag, Basel.

    Google Scholar 

  147. Quiviger, B., Franche, C., Lutfalla, G., Rice, D., Haselkorn, R., and Elmerich, C. 1982. Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense . Biochimie 64: 495–502.

    CAS  Google Scholar 

  148. Gauthier, D. and Elmerich, C. 1977. Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum . FEMS Microbiol. Lett. 2: 101–104.

    CAS  Google Scholar 

  149. Bani, D., Barberio, C., Bazzicalupo, M., Favilli, F., Gallori, E., and Polsinelli, M. 1980. Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense . J. Gen. Microbiol. 119: 239–244.

    CAS  Google Scholar 

  150. Barberio, C., Bazzicalupo, M., Federici, G., Gallori, E., and Polsinelli, M. 1983. Mutants of Azospirillum brasilense altered in nitrogen fixation. FEMS Microbiol. Lett. 20: 361–364.

    CAS  Google Scholar 

  151. Pedrosa, F.O., and Yates, M.G. 1984. Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gin) type gene products. FEMS Microbiol. Lett. 23: 95–101.

    CAS  Google Scholar 

  152. Jara, P., Quiviger, B., Laurent, P., and Elmerich, C. 1983. Isolation and genetic analysis of Azospirillum brasilense Nifmutants. Can. J. Microbiol. 29: 968–972.

    Google Scholar 

  153. Haselkorn, R. 1978. Heterocyts. Ann. Rev. Plant. Physiol. 29: 319–344.

    CAS  Google Scholar 

  154. Rice, D., Mazur, B.J., and Haselkorn, R. 1982. Isolation and physical mapping of nitrogen fixation genes from the cyanobacterium 7120. J. Biol. Chem. 257: 13157–13163.

    CAS  PubMed  Google Scholar 

  155. Mevarech, M., Rice, D., and Haselkorn, R. 1980. Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc. Natl. Acad. Sci.(USA) 77: 6476–6480.

    CAS  Google Scholar 

  156. Lammers, P.J. and Haselkorn, R. 1983. Sequence of the nifD gene coding for the subunit of dinitrogenase from the cyanobacterium Anabaena . Proc. Natl. Acad. Sci. (USA) 80: 4723–4727.

    CAS  Google Scholar 

  157. Mazur, B.J. and Chiu, C.F. 1982. Sequence of the gene coding for the β subunit of dinitrogenase from the blue green alga Anabaena . Proc. Natl. Acad. Sci. (USA) 79: 6782–6786.

    CAS  Google Scholar 

  158. Fisher, R., Tuli, R., and Haselkorn, R. 1981. A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. Proc. Natl. Acad. Sci. (USA) 78: 3393–3397.

    CAS  Google Scholar 

  159. Tuli, R., Fisher, R., and Haselkorn, R. 1982. The ntr gehes of Escherichia coli activate the hut and nif operons of Klebsiella pneumoniae . Gene 19: 109–116.

    CAS  PubMed  Google Scholar 

  160. Tumer, N.E., Robinson, S.J., and Haselkorn, R. 1983. Different promoters for the Anabaena glutamine synthetase gene during growth using molecular fixed nitrogen. Nature 306: 337–342.

    CAS  Google Scholar 

  161. Scolnick, P.A. and Haselkorn, R. 1984. Activation of extra copies of genes coding for nitrogenase in Rhodopseudomonas capsulata . Nature 307: 289–292.

    Google Scholar 

  162. Quinto, C., de la Vega, H., Flores, M., Fernandez, L., Ballado, T., Soberon, G., and Palacios, R. 1982. Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli . Nature 299: 724–726.

    CAS  Google Scholar 

  163. Norel, F., Kush, A., Denéfle, P., Charpin, N., and Elmerich, C. 1984. Nitrogen fixation in a tropical Rhizobium associated with Sesbaniarostrata, p. 694. In: Advances in nitrogen fixation research. C. Veeger and W.E. Newton (eds.), Nijhoff and Junk, Publishers, The Hague and Pudoc, Wageningen.

    Google Scholar 

  164. Hardy, R.W.F., Burns, R.C., and Holsten, R.D. 1973. Application of the acetylene ethylene assay for measurement of nitrogen fixation. Soil. Biol. Biochem. 5: 47–81.

    CAS  Google Scholar 

  165. Rinaudo, G. and Dommergues, Y. 1971. Validity of the acetylene reduction method for determination of nitrogen fixation in rice rhizosphere. Ann. Inst. Pasteur 121: 93–99.

    CAS  Google Scholar 

  166. Döbereiner, J., Day, J.M., and Dart, P.J. 1972. Nitrogenase activity in the rhizosphere of sugarcane and some other tropical grasses, Pl. Soil. 37: 191–196.

    Google Scholar 

  167. Dommergues, Y., Balandreau, J., Rinaudo, G., and Weinhard, P. 1973. Non-symbiotic nitrogen fixation in the tropical rhizosphere of rice, maize and different tropical grasses. Soil. Biol. Biochem. 5: 83–89.

    CAS  Google Scholar 

  168. Ruschel, A., Henis, Y., and Salati, E. 1975. Nitrogen-15 tracing of N-fixation with soil grown sugarcane seedlings. Soil. Biol. Biochem. 7: 181–182.

    CAS  Google Scholar 

  169. De-Polli, H., Matsui, E., Döbereiner, J., and Salati, E. 1977. Confirmation of nitrogen fixation in two tropical grasses by 15N2 incorporation. Soil. Biol. Biochem. 9: 119–123.

    CAS  Google Scholar 

  170. Eskew, D.L., Eaglesham, A.R., and App, A.A. 1981. Heterotrophic 15N2 fixation and distribution of newly fixed nitrogen in a rice-flooded soil system. PI. Physiol. 68: 48–52.

    CAS  Google Scholar 

  171. Rennie, R.J. and Rennie, D.A. 1983. Techniques for quantifying N2 fixation in association with non legumes under field and greenhouse conditions. Can. J. Microbiol. 29: 1022–1035.

    Google Scholar 

  172. Döbereiner, J., Day, J.M., and Dart, P.J. 1972. Nitrogenase activity and oxygen sensitivity of the Paspalum notatumAzotobacter paspali association. J. Gen. Microbiol. 71: 103–116.

    Google Scholar 

  173. Day, J.M. and Döbereiner, J. 1976. Physiological aspects of N2-fixation by a spirillum from Digitaria roots. Soil. Biol. Biochem. 8: 45–50.

    CAS  Google Scholar 

  174. Tarrand, J.J., Krieg, N.R., and Döbereiner, J. 1978. A taxonomic study of the Spirillum lipoferum group, with description of a new genus Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasiknse sp. nov. Can. J. Microbiol. 24: 967–980.

    CAS  PubMed  Google Scholar 

  175. Van Berkum, P. and Bohlool, B.B. 1980. Evaluation of nitrogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Rev. 44: 491–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Patriquin, D.G. 1982. New developments in grass-bacteria associations, p. 139–190. In: Advances in agricultural microbiology, N.S. Subba Rao (ed.), Oxford and IBH Publishing Co. New-Delhi, Bombay, Calcutta.

    Google Scholar 

  177. Vose, P.B. 1983. Developments in nonlegume N2-fixing systems. Can.J. Microbiol. 29: 837–850.

    Google Scholar 

  178. Balandreau, J. 1983. Microbiology of the association. Can. J. Microbiol. 29: 851–859.

    Google Scholar 

  179. Döbereiner, J., Marriel, I.E., and Nery, M. 1976. Ecological distribution of Spirillum lipoferum beijerinck. Can. J. Microbiol. 22: 1464–1473.

    PubMed  Google Scholar 

  180. Kumari, M., Kavimadan, S.K., and Subba Rao, N.S. 1976. Occurence of nitrogen spirillum in roots of rice, sorghum, maize and other plants. Ind. J. Exp. Biol. 14: 638–639.

    Google Scholar 

  181. Klossak, R.M. and Bohlool, B.B. 1983. Prevalence of Azospirillum spp. in the rhizosphere of tropical grasses. Can. J. Microbiol. 29: 649–652.

    Google Scholar 

  182. Nur, I., Okon, Y., and Henis, Y. 1980. Comparative studies of nitrogen fixing bacteria associated with grasses in Israël with Azospirillum brasilense . Can.J. Microbiol. 26: 27–32.

    Google Scholar 

  183. Haahtela, K., Wartiovaara, T., Sudman, V., and Skujins, J. 1981. Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum in cold climate spodosols. Appl. Environm. Biol. 41: 203–206.

    CAS  Google Scholar 

  184. Lamm, R.B. and Neyra, C.A. 1981. Characterization and cyst production of azospirilla isolated from selected grasses growing in New-Jersey and New-York. Can. J. Microbiol. 27: 1320–1325.

    Google Scholar 

  185. Rao, A.V. and Venkateswarlu, B. 1982. Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can. J. Microbiol. 28: 778–782.

    CAS  Google Scholar 

  186. Magalhaes, F.M., Baldani, J.L., Souto, S.M., Duykendall, J.R., and Döbereiner, J. 1983. A new acid tolerant Azospirillum species. An. Acad. brasil. Cienc. 55: 417–430.

    Google Scholar 

  187. Rennie, R.J. 1980. Dinitrogen-fixing bacteria: computer-assisted identification of soil isolates. Can. J. Microbiol. 26: 1275–1283.

    CAS  PubMed  Google Scholar 

  188. Wright, S.F. and Weaver, R.W. 1981. Enumeration and identification of nitrogen fixing bacteria from forage grass roots. Appl. Environm. Microbiol. 42: 97–101.

    CAS  Google Scholar 

  189. Ladha, J.K., Barraquio, W.L., and Watanabe, I. Isolation and identification of nitrogen fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can. J. Microbiol. 29: 1301–1308.

    Google Scholar 

  190. Garcia, J.L., Roussos, S., Gauthier, D., Rinaudo, G., and Mandel, M. 1983. Etude taxonomique de bactéries azotofixatrices libres isolées de l'endorhizosphère du riz. Ann. Microbiol. (Inst. Pasteur) 134B: 329–346.

    CAS  Google Scholar 

  191. Haahtela, K., Helander, I., Nurmiaho-Lassila, E.L., and Sudman, V. 1983. Morphological and physiological characteristics and lipopoly-saccharide composition of N2 fixing (C2H2-reducing) root-associated Pseudomonas sp. Can. J. Microbiol. 29: 874–880.

    CAS  PubMed  Google Scholar 

  192. Barraquio, W.L., Ladha, J.K., and Watanabe, I. 1983. Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can. J. Microbiol. 29: 874–880.

    Google Scholar 

  193. Umali-Garcia, M., Hubbel, D.H., Gaskins, M.H., and Dazzo, F.B. 1980. Association of Azospirillum with grass roots. Appl. Environm. Microbiol. 39: 219–226.

    CAS  Google Scholar 

  194. Dazzo, F.B. 1981. Bacterial attachment as related to cellular recognition in the Rhizobium-legume symbiosis. J. Supramol. Struct. Cell. Biochem. 16: 29–41.

    CAS  PubMed  Google Scholar 

  195. Choma, A., Russa, R., and Lorkiewicz, Z. 1984. Chemical composition of lipopolysaccharide from Azospirillum lipoferum . FEMS Microbiol. Lett. 22: 245–248.

    CAS  Google Scholar 

  196. Peumans, W.J. and Stinissen, H.M. 1983. Gramineae lectins: occurrence, molecular biology and physiological function, p. 99–116. In: Chemical taxonomy, molecular biology, and function of plant lectin. Alan R. Liss, Inc.

    Google Scholar 

  197. Patriquin, D.G., Döbereiner, J., and Jain, D.K. 1983. Sites and process of association between diazotrophs and grasses. Can. J. Microbiol. 29: 900–915.

    Google Scholar 

  198. Barak, R., Nur, I., and Okon, Y. 1983. Detection of chemotaxis in Azospirillum brasilense . J. Appl. Bacteriol. 53: 399–403.

    Google Scholar 

  199. Korhonen, T.K., Tarkka, E., Ranta, H., and Haahtela, K. 1983. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots. J. Bacteriol. 155: 860–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Döbereiner, J., and Day, J.M. 1976. Associative symbiosis in tropical grasses: characterization of the microorganisms and dinitrogenlixing sites, p. 518–536. In: Proceedings of the Ist International Symposium on Nitrogen fixation. W.E. Newton and C.J. Nyman (eds.), Washington state University Press, Pullman.

    Google Scholar 

  201. Patriquin, D.G. and Döbereiner, J. 1978. Light microscopy observations of tetrazolium reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Cah. J. Microbiol. 24: 734–742.

    CAS  Google Scholar 

  202. Tien, T.M., Diem, H.G., Gaskins, M.H., and Hubbell, D.H. 1981. Polygalacturonic acid transeliminase by Azospirillum species. Can. J. Microbiol. 27: 426–431.

    CAS  PubMed  Google Scholar 

  203. Baldani, V.L.D. and Döbereiner, J. 1980. Host plant specificity in the infection of cereals with Azospirillum spp. Soil. Biol. Bioche. 12: 434–444.

    Google Scholar 

  204. De-Polli, H., Bohlool, B.B., and Döbereiner, J. 1980. Serological differenciation of Azospirillum species belonging to different host plant specificity groups. Arch. Microbiol. 126: 217–222.

    Google Scholar 

  205. Rennie, R.J. and Larson, R.I. 1979. Dinitrogen fixation with disomic chromosome substitution lines of spring wheat. Can. J. Bot. 57: 2771–2775.

    CAS  Google Scholar 

  206. Tien, T.M., Gaskins, M.H., and Hubbel, D.H. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environm. Microbiol. 37: 1016–1024.

    CAS  Google Scholar 

  207. Kapulnik, Y., Okon, Y., Kigel, J., Nur, I., and Henis, Y. 1981. Effect of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Seratia italica inoculated with Awspirillum brasilense (strain Cd). Pl. Physiol. 68: 340–343.

    CAS  Google Scholar 

  208. Lin, W., Okon, Y., and Hardy, R. 1983. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense . Appl. Environm. Microbiol. 45: 1775–1779.

    CAS  Google Scholar 

  209. Brown, M.E. 1976. Role of Azotobacter paspali in association with Paspalum notatun . J. Appl. Bact. 40: 129–134.

    Google Scholar 

  210. Reynders, L. and Vlassak, K. 1979. Conversion of tryptophan to indoie acetic acid by Azospirillum brasilense . Soil. Biol. Biochem. 11: 547–548.

    CAS  Google Scholar 

  211. Hartmann, A., Singh, M., and Klingmüller, W. 1983. Isolation and characterization of Azospirillum mutants excreting high amounts of indoie acetic acid. Can. J. Microbiol. 29: 916–923.

    CAS  Google Scholar 

  212. Barea, J.M. and Brown, M.E. 1974. Effects of plant growth produced by Azotobacter paspali related to synthesis of plant growth regulated substances. J. Appl. Bacteriol. 37: 583–593.

    CAS  PubMed  Google Scholar 

  213. Badenoch-Jones, J., Summons, R.E., Djordjvic, M.A., Shine, J., Letham, D.S., and Rolfe, B.G. 1982. Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root hair curling and nodulation initiation. Appl. Environm. Biol. 44: 275–280.

    CAS  Google Scholar 

  214. Child, J.J. and Kruz, W.G.W. 1978. Inducing effect of plant cells on nitrogenase activity by Spirillum and Rhizobium in vitro . Can. J. Microbiol. 24: 143–148.

    CAS  PubMed  Google Scholar 

  215. Berg, R.H., Tyler, M.E., Novick, N.J., Vasil, V., and Vasil, I.K. 1980. Biology of Azospirillum sugar-cane association: enhancement of nitrogenase activity. Appl. Environm. Microbiol. 39: 642–649.

    CAS  Google Scholar 

  216. Papen, H. and Werner, D. 1982. Organic acid utilization, succinate excretion, encystation and oscillating nitrogenase activity in Azospirillum brasilense under microaerobic conditions. Arch. Microbiol. 132: 57–61.

    CAS  Google Scholar 

  217. Sadoff, H.L., Berke, E., and Loperfido, B. 1971. Physiological studies of encystment in Azotobacter vinelandii . J. Bacteriol. 105: 185–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Smith, R.L., Bouton, J.H., Schank, S.C., Quesenberry, R.H., Tyler, M.E., Gaskins, M.H., and Littel, R.C. 1976. Nitrogen fixation in grasses inoculated with Sprillum lipoferum . Science. 193: 1003–1005.

    CAS  PubMed  Google Scholar 

  219. Nur, I., Okon, Y., Henis, Y. 1980. An increase in nitrogen content of Setaria italica and Zea mays inoculated with Azospirillum . Can. J. Microbiol. 26: 482–485.

    CAS  PubMed  Google Scholar 

  220. Rennie, R.J. 1980. 15N-isotope dilution as a measure of dinitrogen fixation by Azospirillum brasilense associated with maize. Can. J. Bot. 58: 21–24.

    CAS  Google Scholar 

  221. Kapulnik, Y., Kigel, L., Okon, Y., Nur, I., and Henis, Y. 1981. Effect of Azospirillum inoculation on some growth parameters and N-content of wheat, sorghum and panicum. Pl. Soil. 61: 65–70.

    Google Scholar 

  222. Brown, M.E. 1974. Seed and root bacterization. Ann. Rev. Phytopathol. 12: 181–197.

    CAS  Google Scholar 

  223. O'Hara, G.W., Davey, M.R., and Lucas, J.A. 1981. Effect of inoculation of Zea mays with Azospirillum brasilense strains under temperate conditions. Can. J. Microbiol. 27: 871–877.

    CAS  PubMed  Google Scholar 

  224. Albrecht, S.L., Okon, Y., and Burris, R.H. 1977. Effect of light and temperature on the association between Zea mays and Spirillum lipoferum . Pl. Physiol. 60: 528–531.

    CAS  Google Scholar 

  225. Ventura, W. and Watanabe, I. 1982. 15N dilution technique of assessing nitrogen fixation in association with rice. Phillipp. J. Crop. Sci. 7: 44–50.

    Google Scholar 

  226. Boddey, R.M., Chalk, P.M., Victoria, R., and Matsui, E. 1983. The 15N isotope dilution technique applied to the estimation of biological nitrogen fixation associated with Paspalum notatum C.V. batatais in the field. Soil. Biol. Biochem. 15: 25–32.

    CAS  Google Scholar 

  227. Rennie, R.J., de Freitas, J.R., Ruschel, A.P., and Vose, P.V. 1983. 15N dilution to quantify dinitrogen (N2) fixation associated with Canadian and brazilian wheat. Can. J. Bot. 61: 1667–1671.

    CAS  Google Scholar 

  228. Okon, Y., Heytler, P.G., and Hardy, R.W.F. 1983. N2 fiixalion by Azospirillum brasilense and its incorporation into host Setaria italica . App. Environm. Microbiol. 46: 694–697.

    CAS  Google Scholar 

  229. Stacey, G. and Upchurch, R.G. 1984. Rhizobium inoculation of legumes. Trends Biotechnol. 2: 65–70.

    CAS  Google Scholar 

  230. Subba Rao, N.S. and Dart, P.J. 1981. Nitrogen fixation associated with sorghum and millet, p. 169–177. In: Associative N2-fixation. P.B. Vose and A.P. Ruschel (eds.), CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  231. Ela, S.W., Anderson, M.A., and Brill, W.J. 1982. Screening and selection of maize to enhance associative bacterial nitrogen fixation. Pl. Physiol. 70: 1564–1567.

    CAS  Google Scholar 

  232. Hirota, Y., Fujii, T., Saho, Y., and Iyama, S. 1978. Nitrogen fixation in the rhizosphere of rice. Nature. 276: 416–417.

    CAS  Google Scholar 

  233. Sano, Y., Fujii, T., Iyama, S., and Komagata, K. 1981. Nitrogen fixation in the rhizosphere of cultivated and wild rice strains. Crop. Sc. 21: 758–761.

    CAS  Google Scholar 

  234. Iyama, S., Sano, S., and Fujii, T. 1983. Diallel analysis of nitrogen fixation in the Rhizosphere of rice. Pl. Sc. Lett. 30: 129–135.

    CAS  Google Scholar 

  235. Grilli Caiola, M. 1980. On the phycosymbionts of the cycad coralloid roots. New Phyto. 85: 537–544.

    Google Scholar 

  236. Bonnett, H.T. and Silvester, W.B. 1981. Specificity of the Gunnera-Nostoc endosymbiosis. New Phytol. 89: 121–128.

    CAS  Google Scholar 

  237. Peters, G.A., Calvert, H.E., Kaplan, D., Ito, I., and Toia, R.E. Jr. 1982. The Azolla-anabaena symbiosis. Israel J. Bot. 31: 305–323.

    Google Scholar 

  238. Watanabe, I. 1982. Azolla-Anabaena symbiosis: its physiology and use in tropical agriculture, p. 169–185. In: Microbiology of tropical soils and plant productivity. Y.R. Dommergues and H.G. Diem (eds.), Nijhoff and Junk Publishers, The Hague, Boston, London.

    Google Scholar 

  239. Peters, G.A. and Mayne, B.C. 1974. The Azolla Anabaena relationship: initial characterization of the association. Pl. Physiol. 53: 813–819.

    CAS  Google Scholar 

  240. Newton, J.W., and Herman, A.I. 1979. Isolation of cyanobacteria from the aquatic fern Azolla . Arch. Microbiol. 120: 161–165.

    Google Scholar 

  241. Newton, J.W. and Cavins, J.F. 1976. Altered nitrogenous pools induced by the Azolla-Anabaena symbiosis. Pl. Physiol. 58: 798–799.

    CAS  Google Scholar 

  242. Orr, J. and Haselkorn, R. 1982. Regulation of glutamine synthetase activity and synthesis in free-living and symbiotic Anabaena spp. J. Bacterio. 152: 626–635.

    CAS  Google Scholar 

  243. Talley, S.N., Lim, E., and Rains, D.W. 1981. Application of Azolla in crop production, p. 363–383. In: Genetic engineering of symbiotic nitrogen fixation and conservation of fixed nitrogen. A. Hollaender (ed.), Basic Life Science, Vol. 17, Plenum Press, New York, London.

    Google Scholar 

  244. Roger, P.A. and Kulasooriya, S.A. 1980. Blue-green algae and rice. Int. Rice Res. Inst. Los Banos, Phillipines. 112 pp.

  245. Van Straten, J., Akkermans, D.L., and Roelofsen, W. 1977. Nitrogenase activity of endophyte suspensions derived from root nodules of Alnus, Hippophae, Sheperdia and Myrica spp. Nature 266: 257–258.

    CAS  Google Scholar 

  246. Callaham, D., Del Tredici, P., and Torrey, J.G. 1978. Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia . Science, 199: 899–902.

    CAS  Google Scholar 

  247. Quispel, A. and Burgraaf, A.J.P. 1981. Frankia the diazotrophic endophyte from actinorhiza's, p. 229–236. In: Current perspectives in Nitrogen fixation. A.H. Gibson and W.E. Newton (eds.), Australian Acad. Sci. Canberra.

    Google Scholar 

  248. Normand, P. and Lalonde, M. 1982. Evaluation of Frankia strains isolated from provenance of two Alnus species. Can. J. Microbio. 28: 1133–1142.

    Google Scholar 

  249. Benson, D.R. 1982. Isolation of Frankia strains from alder actinorhizal root nodules. App. Environm. Microbiol. 44: 461–465.

    CAS  Google Scholar 

  250. Diem, H.G., Gauthier, D., and Dommergues, Y.R. 1983. An effective strain of Frankia from Casuarina sp. Can. J. Bo. 61: 2815–2821.

    Google Scholar 

  251. Gauthier, D., Diem, H.G., and Dommergues, Y.R. 1981. In vitro nitrogen fixation by two actynomycetes strains isolated from Casuarina nodules. Appl. Environm. Microbiol. 41: 306–308.

    CAS  Google Scholar 

  252. Tjepkma, J., Ormerod, W., and Torrey, J. 1980. On vesicle formation and in vitro acetylene reduction by Frankia . Nature. 287: 633–635.

    Google Scholar 

  253. Gauthier, D. 1983. Effect of L-methionine-DL-sulfoximine on acetylene reduction and vesicle formation in derepressed cultures of Frankia strain D11. Can. J. Microbiol. 29: 1003–1006.

    CAS  Google Scholar 

  254. Torrey, J.G. and Callaham, D. 1982. Structural features of the vesicles of Frankia Cp11 in culture. Can. J. Microbiol. 28: 749–757.

    Google Scholar 

  255. Torrey, J.G., Baker, D., Callaham, D., Del Tredici, P., Newcomb, W., Peterson, R.L., and Tjepkema, J.D. 1980. On the nature of the endophyte causing root nodulation in Comptonia, p. 217–227. In: nitrogen fixation. W.E. Newton and WH Orme-Johnson (eds.), University Park Press, Baltimore.

    Google Scholar 

  256. Diem, H.G., Gauthier, D., and Dommergues, Y.R. 1982. Isolation of Frankia from nodules of Casuarina esquisetifolia . Can. J. Microbiol. 28: 526–530.

    Google Scholar 

  257. Gauthier, D., Diem, H.G., and Dommergues, Y.R. 1981. Infectivité et effectivité de souches de Frankia isolées de nodules de Casuarina equisetifolia et d'Hippophae rhamnoides . C.R. Acad. Sci. (Paris) 293: 489–491.

    Google Scholar 

  258. Chaboud, A. and Lalonde, M. 1983. Lectin binding on surface of Frankia strains. Can. J. Bot. 61: 2889–2897.

    CAS  Google Scholar 

  259. Tjepkma, J. 1983. Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot. 61: 2924–2929.

    Google Scholar 

  260. Silvester, W.B. 1977. Dinitrogen fixation by plant associations excluding legumes, p. 141–190. In: Treatise on dinitrogen fixation: agronomy and ecology. R.W.F. Hardy and A.H. Gibson (eds.), Willey and Sons, Inc. New York.

    Google Scholar 

  261. Burris, B.H. 1977. Overview of nitrogen fixation, p 9–18. In: Genetic engineering for nitrogen fixation. A. Hollaender (ed.), Basic Life Sciences, Vol. 9, Plenum Press, New York.

    Google Scholar 

  262. Swaminathan, M.S. 1984. Rice. Sci. Am. 250: 63–71.

    Google Scholar 

  263. Heichel, G.H., Vance, C.P., and Barnes, D.K. 1981. Evaluation elite alfalfa lines for N2-fixation under field conditions, p. 217–232. In: Symbiotic Nitrogen fixatio. A. Hollaender (ed.), Basic Life Science, Vol. 17, Plenum Press, New York.

    Google Scholar 

  264. Perinet, P. and Lalonde, M. 1983. In vitro propagation and nodulation of the actinorhizal host plant Alnus glutinosa (L.) Gaertn . Pl. Sc. Lett. 29: 9–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmerich, C. Molecular Biology and Ecology of Diazotrophs Associated with Non-Leguminous Plants. Nat Biotechnol 2, 967–978 (1984). https://doi.org/10.1038/nbt1184-967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1184-967

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing