Research Paper | Published:

A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria

Bio/Technology volume 1, pages 784791 (1983) | Download Citation

Subjects

Abstract

We have developed a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli. The system consists of two components: special E. coli donor strains and derivatives of E. coli vector plasmids. The donor strains (called mobilizing strains) carry the transfer genes of the broad host range IncP–type plasmid RP4 integrated in their chromosomes. They can utilize any gram negative bacterium as a recipient for conjugative DNA transfer. The vector plasmids contain the P–type specific recognition site for mobilization (Mob site) and can be mobilized with high frequency from the donor strains. The mobilizable vectors are derived from the commonly used E. coli vectors pACYC184, pACYC177, and pBR325, and are unable to replicate in strains outside the enteric bacterial group. Therefore, they are widely applicable as transposon carrier replicons for random transposon insertion mutagenesis in any strain into which they can be mobilized but not stably maintained. The vectors are especially useful for site–directed transposon mutagenesis and for site–specific gene transfer in a wide variety of gram negative organisms.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , and 1977. Genetic engineering in vivo using translocatablc drug resistance elements: New methods in bacterial genetics. J. Mol. Biol. 116: 125–159.

  2. 2.

    and 1983. The prokaryotic transposable element Tn5. BIO/TECHNOLOGY 1: 417–435.

  3. 3.

    , , , , and 1983. Construction and characterization of a versatile broad-host range DNA cloning system for gram-negative bacteria. BIO/TECHNOLOGY 1: 269–275.

  4. 4.

    Bukhari, A.J., Shapiro, J.A. and Adhya, S.L. (eds.) 1977. DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory, New York.

  5. 5.

    and 1979. Escherichia coli auxotrophs induced by insertion of the transposable element Tn5. Genetics 92: 741–747.

  6. 6.

    , and 1980. Polarity of Tn5 insertion mutations in Escherifhia coli. J. Bact. 142: 439–446.

  7. 7.

    , , , and 1971. Properties of an R factor from Pseudomonas aeruginosa. J. Bact. 108: 1244–1249.

  8. 8.

    and 1972. Host ranges of R factors. J. Gen. Microbiol. 70: 453–460.

  9. 9.

    and 1973. Host range and properties of the Pseudomonas R factor R1822. J. Bact. 113: 772–780.

  10. 10.

    1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84: 188–198.

  11. 11.

    1976. Plasmids in Pseudomonas. Ann. Rev. Genet. 10: 7–30.

  12. 12.

    , , and 1978. Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276: 633–634.

  13. 13.

    , , and 1978. Transfer of RP4Mu Plasmids to Agrobacterium tumefaciens. Plasmid 1: 446–455.

  14. 14.

    , , , and 1981. A host-dependent hybrid plasmid suitable as a suicidal carrier for transposable elements. Plasmid 6: 325–331.

  15. 15.

    and 1980. Linkage map of Esrherichia coli K12. Edition G. Microbiol. Rev. 44: 1–56.

  16. 16.

    1980, Incompatibilität und Replikation des Resistcnz-Plasmids RP4. Ph.D. thesis, University of Erlangen, FRG.

  17. 17.

    and 1979. The DNA-protein relaxation complex of the plasmid RK2: Location of the site-specific nick in the region of the proposed origin of transfer. Mol. Gen. Genet. 176: 183–189.

  18. 18.

    , and 1979. Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68, and RK2 are identical. J. Gen. Microbiol. 114: 341–348.

  19. 19.

    and 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648–1652.

  20. 20.

    , , and 1977. Introduction of Bacteriophage Mu into Pseudomonas snlanacearum and Rhizobium meliloti using the R factor RP4. J. Gen. Microbiol. 98: 253–263.

  21. 21.

    , , and 1983. Analysis of plasmid borne genes in Rhizobium meliloti by Tn5 mutagenesis, p.67–89. In: K. W. Clark and J. H. G. Stephens (eds.) Proceedings of the 8th North American Rhizobium Conference, University of Manitoba, Winnipeg, Canada.

  22. 22.

    , , , , and 1981. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol. Gen. Genet. 184: 318–325.

  23. 23.

    , , , and 1982. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bact. 149: 114–122.

  24. 24.

    , , , , and 1983. Localization of symbiotic mutations in Rhizobium meliloti. J. Bact. 153: 635–643.

  25. 25.

    and 1983. A product of the transposase gene inhibits transposition. Genetics 103: 609–615.

  26. 26.

    , and 1983. In vivo packaging of cosmids in transposon-mediated mutagenesis. J. Bact. 153: 1075–1078.

  27. 27.

    and 1981. A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85.

  28. 28.

    1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York.

  29. 29.

    1977. Transformation in Escherichia coli: Cryogenic preservation of competent cells. J. Bact. 132: 349–351.

  30. 30.

    and 1969. Supercoiled circular DNA-protein complex in E. coli: Purification and induced conversion to an open circular DNA form. Proc. Natl. Acad. Sci. USA 62: 1159–1166.

  31. 31.

    and 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193–197.

  32. 32.

    , and 1982. Molecular cloning. Cold Spring Harbor Laboratory, New York.

  33. 33.

    , and 1980. Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, New York.

  34. 34.

    1979. In vitro packaging of λ and cosmid DNA, p. 299–309. In: Methods in Enzymology, R. Wu (ed.), Academic Press, New York.

  35. 35.

    , , and 1981. ISR1: An insertion element isolated from the soil bacterium Rhizobium lupini. Cold Spring Harbor Symposia on Quantitative Biology, Vol. XLV—Part I, Cold Spring Harbor, New York.

  36. 36.

    1972. Formation, induction and curing of bacteriophage PI lysogens. Virol. 48: 679–689.

  37. 37.

    1979. Molekulare Analyse des Resistenzgens des Phagen Pl. Ph.D. thesis, University of Erlangen, FRG.

  38. 38.

    , , and 1980. A new cosmid vector and its use. Gene 11: 271–282.

  39. 39.

    , and 1979. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet. 177: 65–72.

  40. 40.

    and 1977. A Tn7 insertion map of RP4, p. 675–677. In: DNA insertion elements, plasmids, and episomes. A. J. Bukhari, J. A. Shapiro, and S. L. Adhya (eds.), Cold Spring Harbor Laboratory, New York.

  41. 41.

    and 1980. Mapping of replication genes of plasmid RP4, p. 35–42. In: Antibiotic resistance. S. Mitsuhashi, L. Rosival, and V. Krecmery (eds.), Springer-Verlag, Berlin, Heidelberg, New York.

  42. 42.

    and 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bact. 134: 1141–1156.

  43. 43.

    1978. Construction and characterization of new cloning vehicles III. Derivatives of plasmid pBR322 carrying unique FcoRI sites for selection of FcoRI generated recombinant molecules. Gene 4: 121–136.

Download references

Author information

Affiliations

  1. Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld 1, FRG

    • R. Simon
    • , U. Priefer
    •  & A. Pühler

Authors

  1. Search for R. Simon in:

  2. Search for U. Priefer in:

  3. Search for A. Pühler in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nbt1183-784

Further reading