Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing dendrimers for biological applications

Abstract

Dendrimers are branched, synthetic polymers with layered architectures that show promise in several biomedical applications. By regulating dendrimer synthesis, it is possible to precisely manipulate both their molecular weight and chemical composition, thereby allowing predictable tuning of their biocompatibility and pharmacokinetics. Advances in our understanding of the role of molecular weight and architecture on the in vivo behavior of dendrimers, together with recent progress in the design of biodegradable chemistries, has enabled the application of these branched polymers as anti-viral drugs, tissue repair scaffolds, targeted carriers of chemotherapeutics and optical oxygen sensors. Before such products can reach the market, however, the field must not only address the cost of manufacture and quality control of pharmaceutical-grade materials, but also assess the long-term human and environmental health consequences of dendrimer exposure in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of a dendrimer.
Figure 2: Synthesis of a polyester dendron.
Figure 3: The variety of dendrimers used in biology.
Figure 4: Self-immolative dendrimers.
Figure 5: A simplified mathematical model predicting drug concentration in a tumor.
Figure 6: The effect of polymer architecture on glomerular filtration.
Figure 7: Dendritic polymer architectures.

Similar content being viewed by others

References

  1. Buhleier, E., Wehner, W. & Vögtle, F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis (Mass.) 155–158 (1978).

  2. Denkewalter, R.G., Kolc, J. & Lukasavage, W.J. Macromolecular highly branched homogeneous compound based on lysine units. US Patent 4,289,872, (1981).

  3. Tomalia, D.A. et al. A new class of polymers-starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).

    CAS  Google Scholar 

  4. Newkome, G.R., Yao, Z., Baker, G.R. & Gupta, V.K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 50, 2003–2004 (1985).

    CAS  Google Scholar 

  5. Fréchet, J.M.J. & Tomalia, D.A. (eds.) Dendrimers and Other Dendritic Polymers. (John Wiley & Sons, Chichester, New York, USA, 2001).

    Google Scholar 

  6. Tomalia, D.A., Naylor, A.M. & Goddard, W.A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Edn. Engl. 29, 138–175 (1990).

    Google Scholar 

  7. de Brabander-van den Berg, E.M.M. & Meijer, E.W. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Edn Engl. 32, 1308–1311 (1993).

    Google Scholar 

  8. Hawker, C.J. & Fréchet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990).

    CAS  Google Scholar 

  9. Sadler, K. & Tam, J.P. Peptide dendrimers: applications and synthesis. J. Biotechnol. 90, 195–229 (2002).

    CAS  PubMed  Google Scholar 

  10. Ihre, H., Hult, A. & Söderlind, E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J. Am. Chem. Soc. 118, 6388–6395 (1996).

    CAS  Google Scholar 

  11. Grinstaff, M.W. Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry 8, 2838–2846 (2002).

    CAS  Google Scholar 

  12. Turnbull, W.B. & Stoddart, J.F. Design and synthesis of glycodendrimers. J. Biotechnol. 90, 231–255 (2002).

    CAS  PubMed  Google Scholar 

  13. Nilsen, T.W., Grayzel, J. & Prensky, W. Dendritic nucleic acid structures. J. Theor. Biol. 187, 273–284 (1997).

    CAS  Google Scholar 

  14. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nat. Mater. 3, 38–42 (2004).

    CAS  PubMed  Google Scholar 

  15. Liu, M., Kono, K. & Fréchet, J.M.J. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Release 65, 121–131 (2000).

    CAS  PubMed  Google Scholar 

  16. Stevelmans, S. et al. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J. Am. Chem. Soc. 118, 7398–7399 (1996).

    CAS  Google Scholar 

  17. Mammen, M., Choi, S.K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn Engl. 37, 2754–2794 (1998).

    Google Scholar 

  18. Lundquist, J.J. & Toone, E.J. The cluster glycoside effect. Chem. Rev. 102, 555–578 (2002).

    CAS  PubMed  Google Scholar 

  19. André, S., Liu, B., Gabius, H.J. & Roy, R. First demonstration of differential inhibition of lectin binding by synthetic tri- and tetravalent glycoclusters from cross-coupling of rigidified 2-propynyl lactoside. Org. Biomol. Chem. 1, 3909–3916 (2003).

    PubMed  Google Scholar 

  20. Jiang, Y.H. et al. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. AIDS Res. Hum. Retroviruses 21, 207–213 (2005).

    CAS  PubMed  Google Scholar 

  21. Hecht, S. & Fréchet, J.M.J. Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angew. Chem. Int. Edn. Engl. 40, 74–91 (2001).

    CAS  Google Scholar 

  22. Kojima, C., Kono, K., Maruyama, K. & Takagishi, T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug. Chem. 11, 910–917 (2000).

    CAS  PubMed  Google Scholar 

  23. Morgan, M.T. et al. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003).

    CAS  PubMed  Google Scholar 

  24. Rozhkov, V., Wilson, D. & Vinogradov, S. Phosphorescent Pd porphyrin-dendrimers: tuning core accessibility by varying the hydrophobicity of the dendritic matrix. Macromolecules 35, 1991–1993 (2002).

    CAS  Google Scholar 

  25. Cloninger, M.J. Biological applications of dendrimers. Curr. Opin. Chem. Biol. 6, 742–748 (2002).

    CAS  PubMed  Google Scholar 

  26. Stiriba, S.E., Frey, H. & Haag, R. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Edn. Engl. 41, 1329–1334 (2002).

    CAS  Google Scholar 

  27. Boas, U. & Heegaard, P.M.H. Dendrimers in drug research. Chem. Soc. Rev. 33, 43–63 (2004).

    CAS  PubMed  Google Scholar 

  28. Gillies, E.R. & Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005).

    CAS  PubMed  Google Scholar 

  29. Allen, T.M. & Cullis, P.R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    CAS  PubMed  Google Scholar 

  30. Malik, N., Evagorou, E.G. & Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10, 767–776 (1999).

    CAS  PubMed  Google Scholar 

  31. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  32. Duncan, R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm. Sci. Technol. Today 2, 441–449 (1999).

    CAS  PubMed  Google Scholar 

  33. Kukowska-Latallo, J.F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).

    CAS  PubMed  Google Scholar 

  34. Wooley, K.L., Hawker, C.J. & Fréchet, J.M.J. Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules. J. Am. Chem. Soc. 115, 11496–11505 (1993).

    CAS  Google Scholar 

  35. Gillies, E.R. & Fréchet, J.M.J. Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc. 124, 14137–14146 (2002).

    CAS  PubMed  Google Scholar 

  36. Steffensen, M.B. & Simanek, E.E. Synthesis and manipulation of orthogonally protected dendrimers: building blocks for library synthesis. Angew. Chem. Int. Edn. Engl. 43, 5178–5180 (2004).

    CAS  Google Scholar 

  37. Li, Y., Cu, Y.T.H. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23, 885–889 (2005).

    CAS  PubMed  Google Scholar 

  38. Haensler, J. & Szoka, F.C. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4, 372–379 (1993).

    CAS  PubMed  Google Scholar 

  39. Tang, M.X., Redemann, C.T. & Szoka, F.C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7, 703–714 (1996).

    CAS  PubMed  Google Scholar 

  40. Vincent, L. et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int. J. Cancer 105, 419–429 (2003).

    CAS  PubMed  Google Scholar 

  41. Wiener, E.C. et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31, 1–8 (1994).

    CAS  PubMed  Google Scholar 

  42. Margerum, L.D. et al. Gadolinium(III) DO3A macrocycles and polyethylene glycol coupled to dendrimers. Effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J. Alloys Compd. 249, 185–190 (1997).

    CAS  Google Scholar 

  43. Kobayashi, H. & Brechbiel, M.W. Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol. Imaging 2, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  44. Ziemer, L.S., Lee, W.M.F., Vinogradov, S.A., Sehgal, C. & Wilson, D.F. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J. Appl. Physiol. 98, 1503–1510 (2005).

    CAS  PubMed  Google Scholar 

  45. Dunphy, I., Vinogradov, S.A. & Wilson, D.F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem. 310, 191–198 (2002).

    CAS  PubMed  Google Scholar 

  46. Briñas, R.P., Troxler, T., Hochstrasser, R.M. & Vinogradov, S.A. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J. Am. Chem. Soc. 127, 11851–11862 (2005).

    PubMed  PubMed Central  Google Scholar 

  47. Supattapone, S., Nguyen, H.O.B., Cohen, F.E., Prusiner, S.B. & Scott, M.R. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 96, 14529–14534 (1999).

    CAS  PubMed  Google Scholar 

  48. Roy, R. & Baek, M.G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. J. Biotechnol. 90, 291–309 (2002).

    CAS  PubMed  Google Scholar 

  49. Bourne, N. et al. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob. Agents Chemother. 44, 2471–2474 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wathier, M., Jung, P.J., Camahan, M.A., Kim, T. & Grinstaff, M.W. Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. J. Am. Chem. Soc. 126, 12744–12745 (2004).

    CAS  PubMed  Google Scholar 

  51. Velazquez, A.J. et al. New dendritic adhesives for sutureless ophthalmic surgical procedures. In vitro studies of corneal laceration repair. Arch. Ophthalmol. 122, 867–870 (2004).

    PubMed  Google Scholar 

  52. Drobnik, J. & Rypacek, F. Soluble synthetic polymers in biological systems. Adv. Polym. Sci. 57, 1–50 (1984).

    CAS  Google Scholar 

  53. Roberts, J.C., Bhalgat, M.K. & Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30, 53–65 (1996).

    CAS  PubMed  Google Scholar 

  54. Malik, N. et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000).

    CAS  PubMed  Google Scholar 

  55. Jevprasesphant, R. et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 252, 263–266 (2003).

    CAS  PubMed  Google Scholar 

  56. De Jesús, O.L.P., Ihre, H.R., Gagne, L., Fréchet, J.M.J. & Szoka, F.C. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem. 13, 453–461 (2002).

    Google Scholar 

  57. Gillies, E.R., Dy, E., Fréchet, J.M.J. & Szoka, F.C. Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005).

    CAS  PubMed  Google Scholar 

  58. Fuchs, S. et al. A surface-modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chemistry 10, 1167–1192 (2004).

    CAS  PubMed  Google Scholar 

  59. Chen, H.T., Neerman, M.F., Parrish, A.R. & Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 126, 10044–10048 (2004).

    CAS  PubMed  Google Scholar 

  60. Hong, S. et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem. 15, 774–782 (2004).

    CAS  PubMed  Google Scholar 

  61. Kuo, J.H.S., Jan, M.S. & Chiu, H.W. Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cells. J. Pharm. Pharmacol. 57, 489–495 (2005).

    CAS  PubMed  Google Scholar 

  62. Neerman, M.F., Zhang, W., Parrish, A.R. & Simanek, E.E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm. 281, 129–132 (2004).

    CAS  PubMed  Google Scholar 

  63. Seebach, D., Herrmann, G.F., Lengweiler, U.D., Bachmann, B.M. & Amrein, W. Synthesis and enzymatic degradation of dendrimers from (R)-3-hydroxy-butanoic acid and trimesic acid. Angew. Chem. Int. Edn. Engl. 35, 2795–2797 (1996).

    CAS  Google Scholar 

  64. Ihre, H.R., De Jesús, O.L.P., Szoka, F.C. & Fréchet, J.M.J. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug. Chem. 13, 443–452 (2002).

    CAS  PubMed  Google Scholar 

  65. Lee, C.C., Grayson, S.M. & Fréchet, J.M.J. Synthesis of narrow-polydispersity degradable dendronized aliphatic polyesters. J. Polym. Sci. Part A: Polym. Chem. 42, 3563–3578 (2004).

    CAS  Google Scholar 

  66. Zhang, W. et al. Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J. Am. Chem. Soc. 125, 5086–5094 (2003).

    CAS  PubMed  Google Scholar 

  67. Rendle, P.M. et al. Glycodendriproteins: a synthetic glycoprotein mimic enzyme with branched sugar-display potently inhibits bacterial aggregation. J. Am. Chem. Soc. 126, 4750–4751 (2004).

    CAS  PubMed  Google Scholar 

  68. Córdova, A. & Janda, K.D. Synthesis and catalytic antibody functionalization of dendrimers. J. Am. Chem. Soc. 123, 8248–8259 (2001).

    PubMed  Google Scholar 

  69. Haba, K. et al. Single-triggered trimeric prodrugs. Angew. Chem. Int. Edn. Engl. 44, 716–720 (2005).

    CAS  Google Scholar 

  70. Bracci, L. et al. Synthetic peptides in the form of dendrimers become resistant to protease activity. J. Biol. Chem. 278, 46590–46595 (2003).

    CAS  PubMed  Google Scholar 

  71. Hussain, M. et al. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J. Control. Release 99, 139–155 (2004).

    CAS  PubMed  Google Scholar 

  72. Smet, M., Liao, L.X., Dehaen, W. & McGrath, D.V. Photolabile dendrimers using o-nitrobenzyl ether linkages. Org. Lett. 2, 511–513 (2000).

    CAS  PubMed  Google Scholar 

  73. Watanabe, S., Sato, M., Sakamoto, S., Yamaguchi, K. & Iwamura, M. New dendritic caged compounds: synthesis, mass spectrometric characterization, and photochemical properties of dendrimers with á-carboxy-2-nitrobenzyl caged compounds at their periphery. J. Am. Chem. Soc. 122, 12588–12589 (2000).

    CAS  Google Scholar 

  74. Amir, R.J., Pessah, N., Shamis, M. & Shabat, D. Self-immolative dendrimers. Angew. Chem. Int. Edn. Engl. 42, 4494–4499 (2003).

    CAS  Google Scholar 

  75. Shum, P., Kim, J.M. & Thompson, D.H. Phototriggering of liposomal drug delivery systems. Adv. Drug Deliv. Rev. 53, 273–284 (2001).

    CAS  PubMed  Google Scholar 

  76. Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Geometric disassembly of dendrimers: dendritic amplification. J. Am. Chem. Soc. 125, 15688–15689 (2003).

    CAS  PubMed  Google Scholar 

  77. de Groot, F.M.H., Albrecht, C., Koekkoek, R., Beusker, P.H. & Scheeren, H.W. “Cascade-release dendrimers” liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Edn. Engl. 42, 4490–4494 (2003).

    CAS  Google Scholar 

  78. Li, S., Szalai, M.L., Kevwitch, R.M. & McGrath, D.V. Dendrimer disassembly by benzyl ether depolymerization. J. Am. Chem. Soc. 125, 10516–10517 (2003).

    CAS  PubMed  Google Scholar 

  79. Nishikawa, M., Takakura, Y. & Hashida, M. Pharmacokinetic evaluation of polymeric carriers. Adv. Drug Deliv. Rev. 21, 135–155 (1996).

    CAS  Google Scholar 

  80. Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).

    CAS  PubMed  Google Scholar 

  81. Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L. & Brenner, B.M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol. 74, 583–593 (1979).

    CAS  PubMed  Google Scholar 

  82. Ohlson, M. et al. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am. J. Physiol. Renal Physiol. 281, F103–F113 (2001).

    CAS  PubMed  Google Scholar 

  83. Brochard-Wyart, F. & de Gennes, P.G. Injection threshold for a star polymer inside a nanopore. C. R. l'Acadamie. Sci. Ser. II Univers 323, 473–479 (1996).

    CAS  Google Scholar 

  84. Lee, C.C., Yoshida, M., Fréchet, J.M.J., Dy, E.E. & Szoka, F.C. In vitro and in vivo evaluation of hydrophilic dendronized linear polymers. Bioconjug. Chem. 16, 535–541 (2005).

    CAS  PubMed  Google Scholar 

  85. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2, 347–360 (2003).

    CAS  PubMed  Google Scholar 

  86. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–744 (1999).

    CAS  Google Scholar 

  87. King, H.D. et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 45, 4336–4343 (2002).

    CAS  PubMed  Google Scholar 

  88. Choe, Y.H. et al. Anticancer drug delivery systems: multi-loaded 4N-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control. Release 79, 55–70 (2002).

    CAS  PubMed  Google Scholar 

  89. Pasut, G., Scaramuzza, S., Schiavon, O., Mendichi, R. & Veronese, F.M. PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym. 20, 213–230 (2005).

    CAS  Google Scholar 

  90. Defoort, J.P., Nardelli, B., Huang, W., Ho, D.D. & Tam, J.P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc. Natl. Acad. Sci. USA 89, 3879–3883 (1992).

    CAS  PubMed  Google Scholar 

  91. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci. Part A: Polym. Chem. 38, 2505–2525 (2000).

    CAS  Google Scholar 

  92. Sunder, A., Heinemann, J. & Frey, H. Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. Chemistry 6, 2499–2506 (2000).

    CAS  PubMed  Google Scholar 

  93. Schlüter, A.D. & Rabe, J.P. Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Edn. Engl. 39, 864–883 (2000).

    Google Scholar 

  94. Gössl, I., Shu, L., Schlüter, A.D. & Rabe, J.P. Molecular structure of single DNA complexes with positively charged dendronized polymers. J. Am. Chem. Soc. 124, 6860–6865 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support of dendrimer drug carrier research from the National Institutes of Health (GM 65361 and EB 002047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis C Szoka.

Ethics declarations

Competing interests

F.C.S. is an inventor on US patent no. 2,661,025, “Self-assembling polynucleotide delivery systems comprising dendrimer polycations.” The University of California has licensed this patent to Qiagen, from which the University of California and F.C.S. receive royalty income.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., MacKay, J., Fréchet, J. et al. Designing dendrimers for biological applications. Nat Biotechnol 23, 1517–1526 (2005). https://doi.org/10.1038/nbt1171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing