Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Combined static and dynamic analysis for determining the quality of time-series expression profiles

Abstract

Expression profiling of time-series experiments is widely used to study biological systems. However, determining the quality of the resulting profiles remains a fundamental problem. Because of inadequate sampling rates, the effect of arrest-and-release methods and loss of synchronization, the measurements obtained from a series of time points may not accurately represent the underlying expression profiles. To solve this, we propose an approach that combines time-series and static (average) expression data analysis—for each gene, we determine whether its temporal expression profile can be reconciled with its static expression levels. We show that by combining synchronized and unsynchronized human cell cycle data, we can identify many cycling genes that are missed when using only time-series data. The algorithm also correctly distinguishes cycling genes from genes that specifically react to an environmental stimulus even if they share similar temporal expression profiles. Experimental validation of these results shows the utility of this analytical approach for determining the accuracy of gene expression patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CheckSum method.
Figure 2: Cell cycle and serum-response genes.
Figure 3: Experimental validation.

Similar content being viewed by others

References

  1. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental change. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  2. Nau, G.J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  Google Scholar 

  3. Arbeitman, M.N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 298, 2270–2275 (2002).

    Article  Google Scholar 

  4. Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K. & Simon, I. Comparing the continuous representation of time series expression profiles to identify differentially expressed genes. Proc. Natl. Acad. Sci. USA 100, 10146–10151 (2003).

    Article  CAS  Google Scholar 

  5. Storch, K.F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 418, 78–83 (2002).

    Article  Google Scholar 

  6. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  Google Scholar 

  7. Pramilla, T., Miles, S., GuhaThakurta, D., Jemiolo, D. & Breeden, L.L. Conserved homeodomain proteins interact with mads box protein mcm1 to restrict ecb-dependent transcription to the m/g1 phase of the cell cycle. Genes Dev. 16, 3034–3045 (2002).

    Article  Google Scholar 

  8. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  9. Ishida, S. et al. Role for e2f in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell Biol. 21, 4684–4699 (2001).

    Article  CAS  Google Scholar 

  10. Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  11. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  Google Scholar 

  12. Shedden, K. & Cooper, S. Analysis of cell-cycle gene expression in Saccharomyces cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res, 30, 2920–2929 (2002).

    Article  CAS  Google Scholar 

  13. Wichert, S., Fokianos, K. & Strimmer, K. Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20, 5–20 (2004).

    Article  CAS  Google Scholar 

  14. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotech. 21, 1337–1342 (2003).

    Article  CAS  Google Scholar 

  15. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 798, 799–804 (2002).

    Article  Google Scholar 

  16. Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K. & Simon, I. Continuous representations of time series gene expression data. J. Comput. Biol. 10, 341–356 (2003).

    Article  CAS  Google Scholar 

  17. Chang, H.Y. et. al. Gene expression signature of serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  Google Scholar 

  18. Morris, G.F. & Mathews, M.B. Regulation of proliferating cell nuclear antigen during the cell cycle. J. Biol. Chem. 264, 13856–13864 (1989).

    CAS  PubMed  Google Scholar 

  19. Goswami, P.C., Roti, J.L.R. & Hunt, C.R. The cell cycle-coupled expression of topoisomerase II alpha during S phase is regulated by mRNA stability and is disrupted by heat shock or ionizing radiation. Mol. Cell Biol. 16, 1500–1508 (1996).

    Article  CAS  Google Scholar 

  20. Tobey, R.A., Valdez, J.G. & Crissman, H.A. Synchronization of human diploid fibroblasts at multiple stages of the cell cycle. Exp. Cell Res. 179, 400–416 (1988).

    Article  CAS  Google Scholar 

  21. Qian, J., Dolled-Filhart, M., Lin, J., Yu, H. & Gerstein, M. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 314, 1053–1066 (2001).

    Article  CAS  Google Scholar 

  22. Ernst, J., Nau, G.J. & Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics 21, I159–I168 (2005).

    Article  CAS  Google Scholar 

  23. Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 20, 2493–2503 (2004).

    Article  CAS  Google Scholar 

  24. Zhao, L.P., Prentice, R. & Breeden, L. Statistical modeling of large microarray data sets to identify stimulus-response profiles. Proc. Natl. Acad. Sci. USA 98, 5631–5636 (2001).

    Article  CAS  Google Scholar 

  25. Aach, J. & Church, G.M. Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508 (2001).

    Article  CAS  Google Scholar 

  26. Bar-Joseph, Z., Farkash, S., Gifford, D.K., Simon, I. & Rosenfeld, R. Deconvolving cell cycle expression data with complementary information. Bioinformatics 20, I23–I30 (2004).

    Article  CAS  Google Scholar 

  27. Lu, X., Zhang, W., Qin, Z.S., Kwast, K.E. & Liu, J.S. Statistical resynchronization and Bayesian detection of periodically expressed genes. Nucl. Acids. Res. 32, 447–455 (2004).

    Article  CAS  Google Scholar 

  28. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  29. Ramoni, M.F., Sebastiani, P. & Kohane, I.S. Cluster analysis of gene expression dynamics. Proc. Natl. Acad. Sci. USA 99, 9121–9126 (2002).

    Article  CAS  Google Scholar 

  30. Schliep, A., Schonhuth, A. & Steinhoff, C. Using hidden markov models to analyze gene expression time course data. Bioinformatics 19, I264–I272 (2003).

    Article  Google Scholar 

  31. Kim, S.V., Imoto, S. & Miyano, S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform. 4, 228–235 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tommi Jaakkola, Larry Wasserman, Naftali Kaminski and the anonymous reviewers for comments on earlier versions. Z.B.J. is partially funded by National Science Fund Foundation CAREER award 0448453 and by the Pennsylvania Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziv Bar-Joseph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, I., Siegfried, Z., Ernst, J. et al. Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nat Biotechnol 23, 1503–1508 (2005). https://doi.org/10.1038/nbt1164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing