Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Activation of the mammalian immune system by siRNAs

Abstract

Inhibition of gene expression through RNA interference (RNAi) is emerging as a powerful experimental tool for gene function and target validation studies. The potential uses of this technology seem unlimited, extending to the prevention and therapy of human diseases. However, recent work demonstrating that there are unanticipated, different nonspecific effects associated with the use of small interfering RNAs in mammals has raised concerns about the safe use of RNAi in vivo. These nonspecific effects include activation of the immune system, potentially harming the individual. The application of screening assays for nonspecific activation of both innate and acquired immunity will be necessary for further development of RNAi as a therapeutic tool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways involved in the recognition of siRNAs by the mammalian immune system.

Renee Lucas

Figure 2: Pathways activated by siRNAs in mammalian cells.

Renee Lucas

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  2. Mello, C.C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    Article  CAS  Google Scholar 

  3. Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816 (2001).

    Article  CAS  Google Scholar 

  4. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  Google Scholar 

  5. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  6. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  7. Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

    Article  CAS  Google Scholar 

  8. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  9. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  Google Scholar 

  10. Robinson, R. RNAi therapeutics: how likely, how soon? PLoS Biol. 2, E28 (2004).

    Article  Google Scholar 

  11. Sioud, M. & Sorensen, D.R. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225 (2003).

    Article  CAS  Google Scholar 

  12. Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

    Article  CAS  Google Scholar 

  13. Sledz, C.A. & Williams, B.R. RNA interference in biology and disease. Blood 106, 787–794 (2005).

    Article  CAS  Google Scholar 

  14. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  15. Kim, D.H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22, 321–325 (2004).

    Article  CAS  Google Scholar 

  16. Persengiev, S.P., Zhu, X. & Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    Article  CAS  Google Scholar 

  17. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    Article  CAS  Google Scholar 

  18. Hornung, V. et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  19. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  20. Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348, 1079–1090 (2005).

    Article  CAS  Google Scholar 

  21. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  22. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  23. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  Google Scholar 

  24. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  25. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  26. Verthelyi, D. & Zeuner, R.A. Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol. 24, 519–522 (2003).

    Article  CAS  Google Scholar 

  27. Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

    Article  CAS  Google Scholar 

  28. Ito, T. et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195, 1507–1512 (2002).

    Article  CAS  Google Scholar 

  29. Rossi, M. & Young, J.W. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175, 1373–1381 (2005).

    Article  CAS  Google Scholar 

  30. Hornung, V. et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

    Article  CAS  Google Scholar 

  31. Nagase, H. et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 171, 3977–3982 (2003).

    Article  CAS  Google Scholar 

  32. Hart, O.M., Athie-Morales, V., O'Connor, G.M. & Gardiner, C.M. TLR7/8-Mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J. Immunol. 175, 1636–1642 (2005).

    Article  CAS  Google Scholar 

  33. Caron, G. et al. Direct stimulation of human T cells via TLR5 and TLR7/8: Flagellin and R-848 up-regulate proliferation and IFN-γ production by memory CD4+ T cells. J. Immunol. 175, 1551–1557 (2005).

    Article  CAS  Google Scholar 

  34. Bekeredjian-Ding, I.B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

    Article  Google Scholar 

  35. Kurt-Jones, E.A. et al. Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J. Endotoxin Res. 10, 419–424 (2004).

    Article  CAS  Google Scholar 

  36. Roach, J.C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102, 9577–9582 (2005).

    Article  CAS  Google Scholar 

  37. Gorden, K.B. et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174, 1259–1268 (2005).

    Article  CAS  Google Scholar 

  38. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  Google Scholar 

  39. Verthelyi, D., Ishii, K.J., Gursel, M., Takeshita, F. & Klinman, D.M. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J. Immunol. 166, 2372–2377 (2001).

    Article  CAS  Google Scholar 

  40. Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541–2550 (2004).

    Article  CAS  Google Scholar 

  41. Honda, K. et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  Google Scholar 

  42. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  43. Heidel, J.D., Hu, S., Liu, X.F., Triche, T.J. & Davis, M.E. Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol. 22, 1579–1582 (2004).

    Article  CAS  Google Scholar 

  44. Sugiyama, T. et al. CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J. Immunol. 174, 2273–2279 (2005).

    Article  CAS  Google Scholar 

  45. Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

    Article  CAS  Google Scholar 

  46. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  47. Obika, S. et al. Stability and structural features of the duplexes containing nucleoside analogues with fixed N-type conformation 2′ -O, 4′ -C. Tetrahedr. Lett. 39, 5401–5404 (1998).

    Article  CAS  Google Scholar 

  48. Koshkin, A.A. et al. LNA (locked nucleic acid): synthesis of the adenine, cytosine, guanine, 5-methyl cytosine, thymine, and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    Article  CAS  Google Scholar 

  49. Chiu, Y.L. & Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  Google Scholar 

  50. Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  Google Scholar 

  51. Sen, G. et al. The critical DNA flanking sequences of a CpG oligodeoxynucleotide, but not the 6 base CpG motif, can be replaced with RNA without quantitative or qualitative changes in Toll-like receptor 9-mediated activity. Cell. Immunol. 232, 64–74 (2004).

    Article  CAS  Google Scholar 

  52. Medzhitov, R. & Janeway, C.A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  Google Scholar 

  53. Ishii, K.J. & Akira, S. Innate immune recognition of nucleic acids: beyond toll-like receptors. Int. J. Cancer 117, 517–523 (2005).

    Article  CAS  Google Scholar 

  54. Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet. 11, 283–290 (1995).

    Article  CAS  Google Scholar 

  55. Boule, M.W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  CAS  Google Scholar 

  56. Koski, G.K. et al. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172, 3989–3993 (2004).

    Article  CAS  Google Scholar 

  57. Scheel, B. et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol. 35, 1557–1566 (2005).

    Article  CAS  Google Scholar 

  58. Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  CAS  Google Scholar 

  59. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  Google Scholar 

  60. Karlin, S., Doerfler, W. & Cardon, L.R. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68, 2889–2897 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams, B.R. Signal integration via PKR. Sci. STKE 89, RE2 (2001).

    Google Scholar 

  62. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  Google Scholar 

  63. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  Google Scholar 

  64. Sha, Q., Truong-Tran, A.Q., Plitt, J.R., Beck, L.A. & Schleimer, R.P. Activation of airway epithelial cells by toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 31, 358–364 (2004).

    Article  Google Scholar 

  65. Li, K., Chen, Z., Kato, N., Gale, M. Jr. & Lemon, S.M. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J. Biol. Chem. 280, 16739–16747 (2005).

    Article  CAS  Google Scholar 

  66. Whitmore, M.M. et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res. 64, 5850–5860 (2004).

    Article  CAS  Google Scholar 

  67. Hornung, V. et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 173, 5935–5943 (2004).

    Article  CAS  Google Scholar 

  68. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  69. Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101, 17264–17269 (2004).

    Article  CAS  Google Scholar 

  70. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    Article  CAS  Google Scholar 

  71. Minakuchi, Y. et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109 (2004).

    Article  Google Scholar 

  72. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  73. Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article  CAS  Google Scholar 

  74. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  75. Agrawal, S. & Kandimalla, E.R. Role of Toll-like receptors in antisense and siRNA. Nat. Biotechnol. 22, 1533–1537 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Patricia Stanhope-Baker, Anthony Sadler, Mark Whitmore and Michelle Holko for helpful discussion and suggestions. Work in the Williams laboratory is supported by National Institutes of Health grants RO1 AI34039 and PO1 CA 62220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R G Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, J., Williams, B. Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23, 1399–1405 (2005). https://doi.org/10.1038/nbt1161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing