Review Article | Published:

Activation of the mammalian immune system by siRNAs

Nature Biotechnologyvolume 23pages13991405 (2005) | Download Citation

Subjects

Abstract

Inhibition of gene expression through RNA interference (RNAi) is emerging as a powerful experimental tool for gene function and target validation studies. The potential uses of this technology seem unlimited, extending to the prevention and therapy of human diseases. However, recent work demonstrating that there are unanticipated, different nonspecific effects associated with the use of small interfering RNAs in mammals has raised concerns about the safe use of RNAi in vivo. These nonspecific effects include activation of the immune system, potentially harming the individual. The application of screening assays for nonspecific activation of both innate and acquired immunity will be necessary for further development of RNAi as a therapeutic tool.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

  2. 2

    Mello, C.C. & Conte, D. Jr. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

  3. 3

    Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816 (2001).

  4. 4

    Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

  5. 5

    Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

  6. 6

    Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

  7. 7

    Tomari, Y. & Zamore, P.D. Perspective: machines for RNAi. Genes Dev. 19, 517–529 (2005).

  8. 8

    Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

  9. 9

    Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

  10. 10

    Robinson, R. RNAi therapeutics: how likely, how soon? PLoS Biol. 2, E28 (2004).

  11. 11

    Sioud, M. & Sorensen, D.R. Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem. Biophys. Res. Commun. 312, 1220–1225 (2003).

  12. 12

    Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

  13. 13

    Sledz, C.A. & Williams, B.R. RNA interference in biology and disease. Blood 106, 787–794 (2005).

  14. 14

    Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

  15. 15

    Kim, D.H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22, 321–325 (2004).

  16. 16

    Persengiev, S.P., Zhu, X. & Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

  17. 17

    Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

  18. 18

    Hornung, V. et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

  19. 19

    Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

  20. 20

    Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348, 1079–1090 (2005).

  21. 21

    Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

  22. 22

    Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

  23. 23

    Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

  24. 24

    Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

  25. 25

    Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

  26. 26

    Verthelyi, D. & Zeuner, R.A. Differential signaling by CpG DNA in DCs and B cells: not just TLR9. Trends Immunol. 24, 519–522 (2003).

  27. 27

    Heil, F. et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33, 2987–2997 (2003).

  28. 28

    Ito, T. et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195, 1507–1512 (2002).

  29. 29

    Rossi, M. & Young, J.W. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175, 1373–1381 (2005).

  30. 30

    Hornung, V. et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168, 4531–4537 (2002).

  31. 31

    Nagase, H. et al. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol. 171, 3977–3982 (2003).

  32. 32

    Hart, O.M., Athie-Morales, V., O'Connor, G.M. & Gardiner, C.M. TLR7/8-Mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J. Immunol. 175, 1636–1642 (2005).

  33. 33

    Caron, G. et al. Direct stimulation of human T cells via TLR5 and TLR7/8: Flagellin and R-848 up-regulate proliferation and IFN-γ production by memory CD4+ T cells. J. Immunol. 175, 1551–1557 (2005).

  34. 34

    Bekeredjian-Ding, I.B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

  35. 35

    Kurt-Jones, E.A. et al. Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J. Endotoxin Res. 10, 419–424 (2004).

  36. 36

    Roach, J.C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102, 9577–9582 (2005).

  37. 37

    Gorden, K.B. et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174, 1259–1268 (2005).

  38. 38

    Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

  39. 39

    Verthelyi, D., Ishii, K.J., Gursel, M., Takeshita, F. & Klinman, D.M. Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J. Immunol. 166, 2372–2377 (2001).

  40. 40

    Rutz, M. et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 34, 2541–2550 (2004).

  41. 41

    Honda, K. et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

  42. 42

    Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

  43. 43

    Heidel, J.D., Hu, S., Liu, X.F., Triche, T.J. & Davis, M.E. Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol. 22, 1579–1582 (2004).

  44. 44

    Sugiyama, T. et al. CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J. Immunol. 174, 2273–2279 (2005).

  45. 45

    Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 581–585 (2005).

  46. 46

    Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

  47. 47

    Obika, S. et al. Stability and structural features of the duplexes containing nucleoside analogues with fixed N-type conformation 2′ -O, 4′ -C. Tetrahedr. Lett. 39, 5401–5404 (1998).

  48. 48

    Koshkin, A.A. et al. LNA (locked nucleic acid): synthesis of the adenine, cytosine, guanine, 5-methyl cytosine, thymine, and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

  49. 49

    Chiu, Y.L. & Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

  50. 50

    Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

  51. 51

    Sen, G. et al. The critical DNA flanking sequences of a CpG oligodeoxynucleotide, but not the 6 base CpG motif, can be replaced with RNA without quantitative or qualitative changes in Toll-like receptor 9-mediated activity. Cell. Immunol. 232, 64–74 (2004).

  52. 52

    Medzhitov, R. & Janeway, C.A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

  53. 53

    Ishii, K.J. & Akira, S. Innate immune recognition of nucleic acids: beyond toll-like receptors. Int. J. Cancer 117, 517–523 (2005).

  54. 54

    Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet. 11, 283–290 (1995).

  55. 55

    Boule, M.W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

  56. 56

    Koski, G.K. et al. Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J. Immunol. 172, 3989–3993 (2004).

  57. 57

    Scheel, B. et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol. 35, 1557–1566 (2005).

  58. 58

    Kariko, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for Toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

  59. 59

    Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

  60. 60

    Karlin, S., Doerfler, W. & Cardon, L.R. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68, 2889–2897 (1994).

  61. 61

    Williams, B.R. Signal integration via PKR. Sci. STKE 89, RE2 (2001).

  62. 62

    Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539–548 (2000).

  63. 63

    Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

  64. 64

    Sha, Q., Truong-Tran, A.Q., Plitt, J.R., Beck, L.A. & Schleimer, R.P. Activation of airway epithelial cells by toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 31, 358–364 (2004).

  65. 65

    Li, K., Chen, Z., Kato, N., Gale, M. Jr. & Lemon, S.M. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J. Biol. Chem. 280, 16739–16747 (2005).

  66. 66

    Whitmore, M.M. et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res. 64, 5850–5860 (2004).

  67. 67

    Hornung, V. et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 173, 5935–5943 (2004).

  68. 68

    Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

  69. 69

    Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101, 17264–17269 (2004).

  70. 70

    Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

  71. 71

    Minakuchi, Y. et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109 (2004).

  72. 72

    Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

  73. 73

    Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

  74. 74

    Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

  75. 75

    Agrawal, S. & Kandimalla, E.R. Role of Toll-like receptors in antisense and siRNA. Nat. Biotechnol. 22, 1533–1537 (2004).

Download references

Acknowledgements

We would like to thank Patricia Stanhope-Baker, Anthony Sadler, Mark Whitmore and Michelle Holko for helpful discussion and suggestions. Work in the Williams laboratory is supported by National Institutes of Health grants RO1 AI34039 and PO1 CA 62220.

Author information

Affiliations

  1. Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, 44195, Ohio, USA

    • Joao T Marques
    •  & Bryan R G Williams

Authors

  1. Search for Joao T Marques in:

  2. Search for Bryan R G Williams in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Bryan R G Williams.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/nbt1161

Further reading