Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes

Abstract

Allosteric RNAs operate as molecular switches that alter folding and function in response to ligand binding. A common type of natural allosteric RNAs is the riboswitch; designer RNAs with similar properties can be created by RNA engineering. We describe a computational approach for designing allosteric ribozymes triggered by binding oligonucleotides. Four universal types of RNA switches possessing AND, OR, YES and NOT Boolean logic functions were created in modular form, which allows ligand specificity to be changed without altering the catalytic core of the ribozyme. All computationally designed allosteric ribozymes were synthesized and experimentally tested in vitro. Engineered ribozymes exhibit >1,000-fold activation, demonstrate precise ligand specificity and function in molecular circuits in which the self-cleavage product of one RNA triggers the action of a second. This engineering approach provides a rapid and inexpensive way to create allosteric RNAs for constructing complex molecular circuits, nucleic acid detection systems and gene control elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design architectures for the construction of oligonucleotide-responsive hammerhead ribozymes.
Figure 2: Design and characterization of an oligonucleotide-specific RNA switch possessing YES logic function.
Figure 3: Design and characterization of YES-2, a variant of YES-1 that exhibits altered oligonucleotide specificity.
Figure 4: Design and characterization of NOT-1 based on an extended hammerhead ribozyme.
Figure 5: Design and characterization of AND-1, an oligonucleotide-specific molecular switch that possesses AND logic function.
Figure 6: Design and characterization of OR-1, an oligonucleotide-specific molecular switch that possesses OR logic function.
Figure 7: A two-step ribozyme signaling pathway constructed using YES-1 and a variant of YES-2.

Similar content being viewed by others

References

  1. Breaker, R.R. Natural and engineered oligonucleotides as tools to explore biology. Nature 432, 838–845 (2004).

    Article  CAS  Google Scholar 

  2. Gold, L., Polisky, B., Uhlenbeck, O.C. & Yarus, M. Diversity of oligonucleotides functions. Annu. Rev. Biochem. 64, 763–797 (1995).

    Article  CAS  Google Scholar 

  3. Osborne, S.E. & Ellington, A.D. Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370 (1997).

    Article  CAS  Google Scholar 

  4. Hamaguchi, N., Ellington, A. & Stanton, M. Aptamer beacons for the detection of proteins. Anal. Biochem. 294, 126–131 (2001).

    Article  CAS  Google Scholar 

  5. McCauley, T.G., Hamaguchi, N. & Stanton, M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 319, 244–250 (2003).

    Article  CAS  Google Scholar 

  6. Bock, C. et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 4, 609–618 (2004).

    Article  CAS  Google Scholar 

  7. Soukup, G.A. & Breaker, R.R. Nucleic acid molecular switches. Trends Biotechnol. 17, 469–476 (1999).

    Article  CAS  Google Scholar 

  8. Soukup, G.A. & Breaker, R.R. Allosteric nucleic acid catalysts. Curr. Opin. Struct. Biol. 10, 318–325 (2000).

    Article  CAS  Google Scholar 

  9. Silverman, S.K. Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9, 377–383 (2003).

    Article  CAS  Google Scholar 

  10. Seetharaman, S., Zivarts, M., Sudarsan, N. & Breaker, R.R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat. Biotechnol. 19, 336–341 (2001).

    Article  CAS  Google Scholar 

  11. Hesselberth, J.R., Robertson, M.P., Knudsen, S.M. & Ellington, A.D. Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal. Biochem. 312, 106–112 (2003).

    Article  CAS  Google Scholar 

  12. Nahvi, A. et al. Genetic control by a metabolite binding mRNA. Chem. Biol. 9, 1043–1049 (2002).

    Article  CAS  Google Scholar 

  13. Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  Google Scholar 

  14. Mironov, A.S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002).

    Article  CAS  Google Scholar 

  15. Winkler, W.C., Cohen-Chalamish, S. & Breaker, R.R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA 99, 15908–15913 (2002).

    Article  CAS  Google Scholar 

  16. Sudarsan, N., Barrick, J.E. & Breaker, R.R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    Article  CAS  Google Scholar 

  17. Kubodera, T. et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′ UTR. FEBS Lett. 555, 516–520 (2003).

    Article  CAS  Google Scholar 

  18. Winkler, W.C. & Breaker, R.R. Genetic control by metabolite-binding riboswitches. ChemBioChem 4, 1024–1032 (2003).

    Article  CAS  Google Scholar 

  19. Vitreschak, A.G., Rodionov, D.A., Mironov, A.A. & Gelfand, M.S. Riboswitches: the oldest mechanism for the regulation of gene expression. Trends Genet. 20, 44–50 (2004).

    Article  CAS  Google Scholar 

  20. Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).

    Article  CAS  Google Scholar 

  21. Lewin, A.S. & Hauswirth, W.W. Ribozyme gene therapy: applications for molecular medicine. Trends Mol. Med. 7, 221–228 (2001).

    Article  CAS  Google Scholar 

  22. Schubert, S. & Kurreck, J. Ribozyme- and deoxyribozymes-strategies for medical applications. Curr. Drug Targets 5, 667–681 (2004).

    Article  CAS  Google Scholar 

  23. Werstuck, G. & Green, M.R. Controlling gene expression in living cells through small molecule-RNA interactions. Science 282, 296–298 (1998).

    Article  CAS  Google Scholar 

  24. Grate, D. & Wilson, C. Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg. Med. Chem. 9, 2565–2570 (2001).

    Article  CAS  Google Scholar 

  25. Thompson, K.M., Syrett, H.A., Knudsen, S.M. & Ellington, A.D. Group I aptazymes as genetic regulatory switches. BCM Biotechnol. 2, 21 (2002).

    Google Scholar 

  26. Suess, B., Fink, B., Berens, C., Stenz, R. & Hillen, W. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 1610–1614 (2004).

    Article  CAS  Google Scholar 

  27. Desai, S.K. & Gallivan, J.P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J. Am. Chem. Soc. 126, 13247–13254 (2004).

    Article  CAS  Google Scholar 

  28. Breaker, R.R. Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13, 31–39 (2002).

    Article  CAS  Google Scholar 

  29. Ferguson, A. et al. A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res. 32, 1756–1766 (2004).

    Article  CAS  Google Scholar 

  30. Srinivasan, J. et al. ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11, 499–508 (2004).

    Article  CAS  Google Scholar 

  31. Stojanovic, M.N. & Stefanovic, D. Deoxyribozyme-based half-adder. J. Am. Chem. Soc. 125, 6673–6676 (2003).

    Article  CAS  Google Scholar 

  32. Stojanovic, M. & Stafanovic, D. A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21, 1069–1074 (2003).

    Article  CAS  Google Scholar 

  33. Tang, J. & Breaker, R.R. Rational design of allosteric ribozymes. Chem. Biol. 4, 453–459 (1997).

    Article  CAS  Google Scholar 

  34. Jose, A.M., Soukup, G.A. & Breaker, R.R. Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res. 29, 1631–1637 (2001).

    Article  CAS  Google Scholar 

  35. Soukup, G.A. & Breaker, R.R. Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96, 3584–3589 (1999).

    Article  CAS  Google Scholar 

  36. Koizumi, M., Kerr, J.K., Soukup, G.A. & Breaker, R.R. Allosteric ribozymes sensitive to the second messengers cAMP and cGMP. Nat. Struct. Biol. 6, 1062–1071 (1999).

    Article  CAS  Google Scholar 

  37. Robertson, M.P., Knudsen, S.M. & Ellington, A.D. In vitro selection of ribozymes dependent on peptides for activity. RNA 10, 114–127 (2004).

    Article  CAS  Google Scholar 

  38. Porta, H. & Lizardi, P.M. An allosteric hammerhead ribozyme. Biotechnol. 13, 161–164 (1995).

    CAS  Google Scholar 

  39. Komatsu, Y., Yamashita, S., Kazama, N., Nobuoka, K. & Ohtsuka, E. Constructuion of new ribozymes requiring short regulator oligonucleotides as a cofactor. J. Mol. Biol. 299, 1231–1243 (2000).

    Article  CAS  Google Scholar 

  40. Burke, D.H., Ozerova, N.D. & Nilsen-Hamilton, M. Allosteric hammerhead ribozyme TRAPs. Biochemistry 41, 6588–6594 (2002).

    Article  CAS  Google Scholar 

  41. Wickiser, J.K., Cohen-Chalamish, S., Puskarz, I., Sawiki, B., Ward, D.C. & Breaker, R.R. Engineered oligonucleotides-responsive ribozymes that form structures resembling kissing complexes. (in preparation).

  42. Stojanovic, M.N., Mitchell, T.E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    Article  CAS  Google Scholar 

  43. Wang, D.Y., Lai, B.H., Feldman, A.R. & Sen, D. A general approach for the use of oligonucleotides effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Nucleic Acids Res. 30, 1735–1742 (2002).

    Article  CAS  Google Scholar 

  44. McCaskill, J.S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1109–1119 (1990).

    Article  Google Scholar 

  45. Bonhoeffer, S., McCaskill, J.S., Stadler, P.F. & Schuster, P. RNA multi-structure landscapes. A study based on temperature dependent partition functions. Eur. Biophys. J. 22, 13–24 (1993).

    Article  CAS  Google Scholar 

  46. Russell, R. et al. Exploring the folding landscape of a structured RNA. Proc. Natl. Acad. Sci. USA 99, 155–160 (2002).

    Article  CAS  Google Scholar 

  47. Woodson, S.A. Folding mechanisms of group I ribozymes: Role of stability and contact order. Biochem. Soc. Trans. 30, 1166–1169 (2002).

    Article  CAS  Google Scholar 

  48. Sosnick, T.R. & Pan, T. RNA folding: Models and perspectives. Curr. Opin. Struct. Biol. 13, 309–316 (2003).

    Article  CAS  Google Scholar 

  49. Flamm, C., Fontana, W., Hofacker, I. & Schuster, P. RNA folding kinetics at elementary step resolution. RNA 6, 325–338 (2000).

    Article  CAS  Google Scholar 

  50. Flamm, C., Hofacker, I.L., Maurer-Stroh, Stadler, P.F. & Zehl, M.S. Design of multi-stable RNA molecules. RNA 7, 254–265 (2001).

    Article  CAS  Google Scholar 

  51. Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220.

  52. Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

    Article  CAS  Google Scholar 

  53. Osborne, E.M., Schaak, J.E. & DeRose, V.J. Characterization of a native hammerhead ribozyme derived from schistosomes. RNA 11, 187–196 (2005).

    Article  CAS  Google Scholar 

  54. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S.D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10, 708–712 (2003).

    Article  CAS  Google Scholar 

  55. De la Pena, M., Gago, S. & Flores, R. Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J. 22, 5561–5570 (2003).

    Article  CAS  Google Scholar 

  56. Canny, M.D. et al. Fast cleavage kinetics of a natural hammerhead ribozyme. J. Am. Chem. Soc. 126, 10848–10849 (2004).

    Article  CAS  Google Scholar 

  57. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  Google Scholar 

  58. Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    Article  CAS  Google Scholar 

  59. Bayer, T.S. & Smolke, C.D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    Article  CAS  Google Scholar 

  60. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  61. Penchovsky, R. & Ackermann, J. DNA library design for molecular computation. J. Comput. Biol. 10, 215–229 (2003).

    Article  CAS  Google Scholar 

  62. Mathews, D., Sabina, J., Zucker, M. & Turner, H. Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

  63. Hofacker, I.L. et al. Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188 (1994).

    Article  CAS  Google Scholar 

  64. Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Breaker laboratory for helpful discussions. This work was supported by grants from the National Science Foundation and by the Defense Advance Research Projects Agency (DARPA). This project also was supported in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, under contract No. N01-HV-28186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R Breaker.

Ethics declarations

Competing interests

R.R.B. is cofounder of the biotechnology company Archemix (Cambridge, MA, USA) that holds intellectual property on RNA switch technology.

Supplementary information

Supplementary Fig. 1

Design and characterization of YES-3, a variant of YES-1 that exhibits altered oligonucleotide specificity. (PDF 403 kb)

Supplementary Fig. 2

Design and characterization of YES-4, a variant of YES-1 that has altered oligonucleotide specificity. (PDF 398 kb)

Supplementary Fig. 3

Design and characterization of YES-5, a variant of YES-1 that exhibits altered oligonucleotide specificity. (PDF 404 kb)

Supplementary Fig. 4

Design and characterization of YES-6, which is more thermodynamically stable (Ep = −57 kcal mol−1) than the other YES switches. It is design not to cleave even in the presence of corresponding DNA effector. (PDF 160 kb)

Supplementary Fig. 5

Dot plot matrix for NOT-1. See Fig. 3 for details on the sequence and function of NOT-1. (PDF 174 kb)

Supplementary Fig. 6

Dot plot matrix for AND-1. (PDF 282 kb)

Supplementary Fig. 7

Dot plot matrix for OR-1. (PDF 418 kb)

Supplementary Fig. 8

Design and function of three variants of OR-1 that exhibit improved levels of oligonucleotide-triggered self cleavage. (PDF 526 kb)

Supplementary Fig. 9

A flow chart of the computational procedure for the design of RNA switches. (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penchovsky, R., Breaker, R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol 23, 1424–1433 (2005). https://doi.org/10.1038/nbt1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing