Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A human β-cell line for transplantation therapy to control type 1 diabetes

Abstract

A human pancreatic β-cell line that is functionally equivalent to primary β-cells has not been available. We established a reversibly immortalized human β-cell clone (NAKT-15) by transfection of primary human β-cells with a retroviral vector containing simian virus 40 large T-antigen (SV40T) and human telomerase reverse transcriptase (hTERT) cDNAs flanked by paired loxP recombination targets, which allow deletion of SV40T and TERT by Cre recombinase. Reverted NAKT-15 cells expressed β-cell transcription factors (Isl-1, Pax 6, Nkx 6.1, Pdx-1), prohormone convertases 1/3 and 2, and secretory granule proteins, and secreted insulin in response to glucose, similar to normal human islets. Transplantation of NAKT-15 cells into streptozotocin-induced diabetic severe combined immunodeficiency mice resulted in perfect control of blood glucose within 2 weeks; mice remained normoglycemic for longer than 30 weeks. The establishment of this cell line is one step toward a potential cure of diabetes by transplantation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme for the establishment of reversibly immortalized human β-cell lines.
Figure 2: Molecular characterization of a human pancreatic β-cell line, NAKT-15.
Figure 3: Morphological and immunohisto-chemical analysis of reverted NAKT-15 cells.
Figure 4: Remission of diabetes by transplantation of reverted NAKT-15 cells into diabetic SCID mice.
Figure 5: Characterization of the reverted NAKT-15 cells after transplantation into diabetic mice.
Figure 6: Histological analysis of the kidney capsule, pancreas and liver of SCID mice transplanted with NAKT-15 cells.

References

  1. Yoon, J.W. & Jun, H.S. Insulin-dependent diabetes mellitus. in Encyclopedia of Immunology (eds. Roitt, I.M. & Delves, P.J.) 1390–1398, (Academic Press, London, 1998).

    Chapter  Google Scholar 

  2. Ricordi, C. & Strom, T.B. Clinical islet transplantation: advances and immunological challenges. Nat. Rev. Immunol. 4, 259–268 (2004).

    Article  CAS  Google Scholar 

  3. Shapiro, A.M., Nanji, S.A. & Lakey, J.R. Clinical islet transplant: current and future directions towards tolerance. Immunol. Rev. 196, 219–236 (2003).

    Article  CAS  Google Scholar 

  4. Moritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S. & Miyazaki, J. Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 52, 1163–1168 (2003).

    Article  CAS  Google Scholar 

  5. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    Article  CAS  Google Scholar 

  6. Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  Google Scholar 

  7. Korsgren, O., Buhler, L.H. & Groth, C.G. Toward clinical trials of islet xenotransplantation. Xenotransplantation 10, 289–292 (2003).

    Article  Google Scholar 

  8. Beattie, G.M. et al. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes 51, 3435–3439 (2002).

    Article  CAS  Google Scholar 

  9. Hayek, A. et al. Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes 44, 1458–1460 (1995).

    Article  CAS  Google Scholar 

  10. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  Google Scholar 

  11. Halvorsen, T.L., Beattie, G.M., Lopez, A.D., Hayek, A. & Levine, F. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J. Endocrinol. 166, 103–109 (2000).

    Article  CAS  Google Scholar 

  12. de la Tour, D. et al. Beta-cell differentiation from a human pancreatic cell line in vitro and in vivo. Mol. Endocrinol. 15, 476–483 (2001).

    CAS  PubMed  Google Scholar 

  13. Matsumura, T. et al. Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 77, 1357–1365 (2004).

    Article  CAS  Google Scholar 

  14. Milo-Landesman, D. et al. Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. Cell Transplant. 10, 645–650 (2001).

    Article  CAS  Google Scholar 

  15. Halvorsen, T.L., Leibowitz, G. & Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864–1870 (1999).

    Article  CAS  Google Scholar 

  16. Fleischer, N. et al. Functional analysis of a conditionally transformed pancreatic beta-cell line. Diabetes 47, 1419–1425 (1998).

    Article  CAS  Google Scholar 

  17. Efrat, S., Fusco-DeMane, D., Lemberg, H., al Emran, O. & Wang, X. Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc. Natl. Acad. Sci. USA 92, 3576–3580 (1995).

    Article  CAS  Google Scholar 

  18. Narushima, M. et al. Adenovirus mediated gene transduction of primarily isolated mouse islets. ASAIO J. 50, 586–590 (2004).

    Article  CAS  Google Scholar 

  19. Bollheimer, L.C. et al. Insulin-sparing effects of troglitazone in rat pancreatic islets. J. Mol. Endocrinol. 31, 61–69 (2003).

    Article  CAS  Google Scholar 

  20. Ohgawara, H., Shikano, T., Fukunaga, K., Yamagishi, M. & Miyazaki, S. Establishment of monolayer culture of pig pancreatic endocrine cells by use of nicotinamide. Diabetes Res. Clin. Pract. 42, 1–8 (1998).

    Article  CAS  Google Scholar 

  21. Halban, P.A. et al. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology 111, 86–94 (1982).

    Article  CAS  Google Scholar 

  22. Kobayashi, N. et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287, 1258–1262 (2000).

    Article  CAS  Google Scholar 

  23. Zalzman, M. et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl. Acad. Sci. USA 100, 7253–7258 (2003).

    Article  CAS  Google Scholar 

  24. Shen, L. et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J. Natl. Cancer Inst. 94, 755–761 (2002).

    Article  CAS  Google Scholar 

  25. Mukai, T. & Sekiguchi, M. Gene silencing in phenomena related to DNA repair. Oncogene 21, 9033–9042 (2002).

    Article  CAS  Google Scholar 

  26. Bae, S.C. & Choi, J.K. Tumor suppressor activity of RUNX3. Oncogene 23, 4336–4340 (2004).

    Article  CAS  Google Scholar 

  27. Giannoukakis, N. & Trucco, M. Current status and prospects for gene and cell therapeutics for type 1 diabetes mellitus. Rev. Endocr. Metab. Disord. 4, 369–380 (2003).

    Article  CAS  Google Scholar 

  28. Jun, H.S. & Yoon, J.W. Approaches for the cure of type 1 diabetes by cellular and gene therapy. Curr. Gene Ther. 5, 249–262 (2005).

    Article  CAS  Google Scholar 

  29. Shapiro, A.M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  Google Scholar 

  30. Linetsky, E. et al. Improved human islet isolation using a new enzyme blend, liberase. Diabetes 46, 1120–1123 (1997).

    Article  CAS  Google Scholar 

  31. Ricordi, C., Lacy, P.E. & Scharp, D.W. Automated islet isolation from human pancreas. Diabetes (suppl. 1) 38, 140–142 (1989).

    Article  Google Scholar 

  32. Westerman, K.A. & Leboulch, P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl. Acad. Sci. USA 93, 8971–8976 (1996).

    Article  CAS  Google Scholar 

  33. Lukowiak, B. et al. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J. Histochem. Cytochem. 49, 519–528 (2001).

    Article  CAS  Google Scholar 

  34. Watanabe, T. et al. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation 75, 1873–1880 (2003).

    Article  CAS  Google Scholar 

  35. Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T. & Edlund, H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385, 257–260 (1997).

    Article  CAS  Google Scholar 

  36. Jensen, J., Serup, P., Karlsen, C., Nielsen, T.F. & Madsen, O.D. mRNA profiling of rat islet tumors reveals nkx 6.1 as a beta-cell-specific homeodomain transcription factor. J. Biol. Chem. 271, 18749–18758 (1996).

    Article  CAS  Google Scholar 

  37. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  Google Scholar 

  38. Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T. & Sato, J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863 (1982).

    CAS  PubMed  Google Scholar 

  39. Ohtani, S. et al. Quantitative analysis of p53-targeted gene expression and visualization of p53 transcriptional activity following intratumoral administration of adenoviral p53 in vivo. Mol. Cancer Ther. 3, 93–100 (2004).

    CAS  PubMed  Google Scholar 

  40. Le Lay, J., Matsuoka, T.A., Henderson, E. & Stein, R. Identification of a novel PDX-1 binding site in the human insulin gene enhancer. J. Biol. Chem. 279, 22228–22235 (2004).

    Article  CAS  Google Scholar 

  41. Garson, J.A., van den Berghe, J.A. & Kemshead, J.T. Novel non-isotopic in situ hybridization technique detects small (1 Kb) unique sequences in routinely G-banded human chromosomes: fine mapping of N-myc and beta-NGF genes. Nucleic Acids Res. 15, 4761–4770 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported in part by a Grant-in-Aid for Scientific Research (B) of the Japan Society for the Promotion of Science to N.K., Life Science Project of 21st Century, Japan, to N.T., and the American Diabetes Association (1-04-ISLET-31) and National Institutes of Health grant 1R21DK60192 to J.W.Y. and H.S.J. We thank Ann Kyle for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoya Kobayashi or Ji-Won Yoon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Quantification of northern and western blots of islet-specific genes in immortalized and reverted NAK-15 cells. (PDF 109 kb)

Supplementary Fig. 2

Real-time PCR analysis of islet-specific genes in immortalized and reverted NAKT-15 cells. (PDF 74 kb)

Supplementary Fig. 3

Loss of proliferation and lack of tumorigenicity of reverted NAKT-15 cells. (PDF 93 kb)

Supplementary Fig. 4

Insulin secretion and content of NAKT-15 cells reverted at different times during passage in culture. (PDF 64 kb)

Supplementary Table 1

Gene expression of β cell-specific transcription factors and insulin in 253 clones of immortalized human β cells. (PDF 27 kb)

Supplementary Table 2

Insulin secreted in response to glucose and insulin and C-peptide content in reverted NAKT-15 cells in vitro (PDF 67 kb)

Supplementary Table 3

Insulin secreted in response to various secretagogues in reverted NAKT-15 cells in vitro. (PDF 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Narushima, M., Kobayashi, N., Okitsu, T. et al. A human β-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23, 1274–1282 (2005). https://doi.org/10.1038/nbt1145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing